Papers

반향 음성 신호의 하모닉 모델링을 이용한 음질 예측 알고리즘

Domestic Journal
2011~2015
작성자
한혜원
작성일
2013-09-01 00:34
조회
145
Authors : Jae-Mo Yang, Weige Chen, Z. Zhang, Hong-Goo Kang

Year : 2013.11

Publisher / Conference : 방송공학회논문지

Volume : 18, issue.6

Page : 919-926

실내 환경에서 음성 신호는 음향 전달 함수에 의한 반향 신호를 포함한다. 이때 반향의 정도나 반향에 의한 음질 변화를 예측하는 것은 반향 제거 알고리즘 등에서 중요한 정보를 제공한다. 본 논문은 음성 신호의 하모닉 모델링 기법을 이용한 반향 환경에서의 자동음질 예측 기법을 제안하다. 제안한 방법에서는 반향을 포함하는 음성 신호에 대한 하모닉 모델링 기법이 가능함을 보이고, 모델링된 하모닉 성분과 나머지 성분 사이의 통계적인 비율을 예측한다. 예측된 비율은 일반적인 방 환경에서의 음질 측정 표준 파라미터와 비교하였다. 실험 결과 제안된 방법은 다양한 반향 환경 (반향 시간 0.2~1.0초)에서 표준 음질 파라미터를 정확하게 예측할 수 있음을 증명하였다.

The acoustic signal from a distance sound source in an enclosed space often produces reverberant sound that varies depending on room impulse response. The estimation of the level of reverberation or the quality of the observed signal is important because it provides valuable information on the condition of system operating environment. It is also useful for designing a dereverberation system. This paper proposes a speech quality estimation method based on the harmonicity of received signal, a unique characteristic of voiced speech. At first, we show that the harmonic signal modeling to a reverberant signal is reasonable. Then, the ratio between the harmonically modeled signal and the estimated non-harmonic signal is used as a measure of standard room acoustical parameter, which is related to speech clarity. Experimental results show that the proposed method successfully estimates speech quality when the reverberation time varies from 0.2s to 1.0s. Finally, we confirm the superiority of the proposed method in both background noise and reverberant environments.
전체 319
319 International Conference Jinyoung Lee and Hong-Goo Kang "Stacked U-Net with High-level Feature Transfer for Parameter Efficient Speech Enhancement" in APSIPA ASC, 2021
318 International Conference Huu-Kim Nguyen, Kihyuk Jeong, Se-Yun Um, Min-Jae Hwang, Eunwoo Song, Hong-Goo Kang "LiteTTS: A Decoder-free Light-weight Text-to-wave Synthesis Based on Generative Adversarial Networks" in INTERSPEECH, 2021
317 International Conference Zainab Alhakeem, Yoohwan Kwon, Hong-Goo Kang "Disentangled Representations for Arabic Dialect Identification based on Supervised Clustering with Triplet Loss" in EUSIPCO, 2021
316 International Conference Miseul Kim, Minh-Tri Ho, Hong-Goo Kang "Self-supervised Complex Network for Machine Sound Anomaly Detection" in EUSIPCO, 2021
315 International Conference Kihyuk Jeong, Huu-Kim Nguyen, Hong-Goo Kang "A Fast and Lightweight Text-To-Speech Model with Spectrum and Waveform Alignment Algorithms" in EUSIPCO, 2021
314 International Conference Jiyoung Lee*, Soo-Whan Chung*, Sunok Kim, Hong-Goo Kang**, Kwanghoon Sohn** "Looking into Your Speech: Learning Cross-modal Affinity for Audio-visual Speech Separation" in CVPR, 2021
313 International Conference Zainab Alhakeem, Hong-Goo Kang "Confidence Learning from Noisy Labels for Arabic Dialect Identification" in ITC-CSCC, 2021
312 International Conference Huu-Kim Nguyen, Kihyuk Jeong, Hong-Goo Kang "Fast and Lightweight Speech Synthesis Model based on FastSpeech2" in ITC-CSCC, 2021
311 International Conference Yoohwan Kwon*, Hee-Soo Heo*, Bong-Jin Lee, Joon Son Chung "The ins and outs of speaker recognition: lessons from VoxSRC 2020" in ICASSP, 2021
310 International Conference You Jin Kim, Hee Soo Heo, Soo-Whan Chung, Bong-Jin Lee "End-to-end Lip Synchronisation Based on Pattern Classification" in IEEE Spoken Language Technology Workshop (SLT), 2020