Papers

FluentTTS: Text-dependent Fine-grained Style Control for Multi-style TTS

International Conference
작성자
dsp
작성일
2022-06-16 17:07
조회
2370
Authors : Changhwan Kim, Seyun Um, Hyungchan Yoon, Hong-goo Kang

Year : 2022

Publisher / Conference : INTERSPEECH

Research area : Speech Signal Processing, Text-to-Speech, Speech Synthesis


Presentation : Poster

In this paper, we propose a method to flexibly control the local prosodic variation of a neural text-to-speech (TTS) model. To provide expressiveness for synthesized speech, conventional TTS models utilize utterance-wise global style embeddings that are obtained by compressing frame-level embeddings along the time axis. However, since utterance-wise global features do not contain sufficient information to represent the characteristics of word-level local features, they are not appropriate for direct use on controlling prosody at a fine scale. In multi-style TTS models, it is very important to have the capability to control local prosody because it plays a key role in finding the most appropriate text-to-speech pair among many one-to-many mapping candidates.
To explicitly present local prosodic characteristics to the contextual information of the corresponding input text, we propose a module to predict the fundamental frequency (F0) of each text by conditioning on the utterance-wise global style embedding. We also estimate multi-style embeddings using a multi-style encoder, which takes as inputs both a global utterance-wise embedding and a local F0 embedding. Our multi-style embedding enhances the naturalness and expressiveness of synthesized speech and is able to control prosody styles at the word-level or phoneme -level.
전체 369
151 International Conference Yanjue Song, Doyeon Kim, Nilesh Madhu, Hong-Goo Kang "On the Disentanglement and Robustness of Self-Supervised Speech Representations" in International Conference on Electronics, Information, and Communication (ICEIC) (*awarded Best Paper), 2024
150 International Conference Yeona Hong, Miseul Kim, Woo-Jin Chung, Hong-Goo Kang "Contextual Learning for Missing Speech Automatic Speech Recognition" in International Conference on Electronics, Information, and Communication (ICEIC), 2024
149 International Conference Juhwan Yoon, Seyun Um, Woo-Jin Chung, Hong-Goo Kang "SC-ERM: Speaker-Centric Learning for Speech Emotion Recognition" in International Conference on Electronics, Information, and Communication (ICEIC), 2024
148 International Conference Hejung Yang, Hong-Goo Kang "On Fine-Tuning Pre-Trained Speech Models With EMA-Target Self-Supervised Loss" in ICASSP, 2024
147 International Conference Hong-Goo Kang, W. Bastiaan Kleijn, Jan Skoglund, Michael Chinen "Convolutional Transformer for Neural Speech Coding" in Audio Engineering Society Convention, 2023
146 International Conference Hong-Goo Kang, Jan Skoglund, W. Bastiaan Kleijn, Andrew Storus, Hengchin Yeh "A High-Rate Extension to Soundstream" in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2023
145 International Conference Zhenyu Piao, Hyungseob Lim, Miseul Kim, Hong-goo Kang "PDF-NET: Pitch-adaptive Dynamic Filter Network for Intra-gender Speaker Verification" in APSIPA ASC, 2023
144 International Conference WooSeok Ko, Seyun Um, Zhenyu Piao, Hong-goo Kang "Consideration of Varying Training Lengths for Short-Duration Speaker Verification" in APSIPA ASC, 2023
143 International Conference Miseul Kim, Zhenyu Piao, Jihyun Lee, Hong-Goo Kang "BrainTalker: Low-Resource Brain-to-Speech Synthesis with Transfer Learning using Wav2Vec 2.0" in The IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 2023
142 International Conference Seyun Um, Jihyun Kim, Jihyun Lee, Hong-Goo Kang "Facetron: A Multi-speaker Face-to-Speech Model based on Cross-Modal Latent Representations" in EUSIPCO, 2023