Papers

Looking into Your Speech: Learning Cross-modal Affinity for Audio-visual Speech Separation

International Conference
2021~
작성자
한혜원
작성일
2021-07-01 17:05
조회
1268
Authors : Jiyoung Lee*, Soo-Whan Chung*, Sunok Kim, Hong-Goo Kang**, Kwanghoon Sohn**

Year : 2021

Publisher / Conference : CVPR

Research area : Audio-Visual, Source Separation


Presentation : Poster

In this paper, we address the problem of separating individual speech signals from videos using audio-visual neural processing. Most conventional approaches utilize frame-wise matching criteria to extract shared information between audio and video signals; thus, their performance heavily depends on the accuracy of audio-visual synchronization and the effectiveness of their representations. To overcome the frame discontinuity problem between two modalities due to transmission delay mismatch or jitter, we propose a cross-modal affinity network (CaffNet) that learns global correspondence as well as locally-varying affinities between audio and visual streams. Since the global term provides stability over a temporal sequence at the utterance-level, this also resolves a label permutation problem characterized by inconsistent assignments. By introducing a complex convolution network, CaffNet-C, that estimates both magnitude and phase representations in the time-frequency domain, we further improve the separation performance. Experimental results verify that the proposed methods outperform conventional ones on various datasets, demonstrating their advantages in real-world scenarios.


Notes
*Jiyoung Lee and Soo-Whan Chung contributed equally to this work.
**Hong-Goo Kang and Kwanghoon Sohn are co-corresponding authors.
전체 344
334 International Conference Doyeon Kim, Soo-Whan Chung, Hyewon Han, Youna Ji, Hong-Goo Kang "HD-DEMUCS: General Speech Restoration with Heterogeneous Decoders" in INTERSPEECH, 2023
333 International Conference Zhenyu Piao, Miseul Kim, Hyungchan Yoon, Hong-Goo Kang "HappyQuokka System for ICASSP 2023 Auditory EEG Challenge" in ICASSP, 2023
332 International Conference Byeong Hyeon Kim, Hyungseob Lim, Jihyun Lee, Inseon Jang, Hong-Goo Kang "Progressive Multi-Stage Neural Audio Codec with Psychoacoustic Loss and Discriminator" in ICASSP, 2023
331 International Conference Hyungseob Lim, Jihyun Lee, Byeong Hyeon Kim, Inseon Jang, Hong-Goo Kang "End-to-End Neural Audio Coding in the MDCT Domain" in ICASSP, 2023
330 International Conference Miseul Kim, Zhenyu Piao, Jihyun Lee, Hong-Goo Kang "Style Modeling for Multi-Speaker Articulation-to-Speech" in ICASSP, 2023
329 International Journal Jinyoung Lee, Hong-Goo Kang "Real-Time Neural Speech Enhancement Based on Temporal Refinement Network and Channel-Wise Gating Methods" in Digital Signal Processing, vol.133, 2023
328 International Journal Taemin Kim, Yejee Shin, Kyowon Kang, Kiho Kim, Gwanho Kim, Yunsu Byeon, Hwayeon Kim, Yuyan Gao, Jeong Ryong Lee, Geonhui Son, Taeseong Kim, Yohan Jun, Jihyun Kim, Jinyoung Lee, Seyun Um, Yoohwan Kwon, Byung Gwan Son, Myeongki Cho, Mingyu Sang, Jongwoon Shin, Kyubeen Kim, Jungmin Suh, Heekyeong Choi, Seokjun Hong, Huanyu Cheng, Hong-Goo Kang, Dosik Hwang & Ki Jun Yu "Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech interfaces" in Nature Communications, vol.13, 2022
327 International Journal Jinyoung Lee, Hong-Goo Kang "Two-Stage Refinement of Magnitude and Complex Spectra for Real-Time Speech Enhancement" in IEEE Signal Processing Letters, vol.29, pp.2188-2192, 2022
326 International Conference Hyeon-Kyeong Shin, Hyewon Han, Doyeon Kim, Soo-Whan Chung, Hong-Goo Kang "Learning Audio-Text Agreement for Open-vocabulary Keyword Spotting" in INTERSPEECH (*Best Student Paper Finalist), 2022
325 International Conference Changhwan Kim, Seyun Um, Hyungchan Yoon, Hong-goo Kang "FluentTTS: Text-dependent Fine-grained Style Control for Multi-style TTS" in INTERSPEECH, 2022