Papers

Self-supervised Complex Network for Machine Sound Anomaly Detection

International Conference
2021~
작성자
한혜원
작성일
2021-08-30 11:06
조회
1985
Authors : Miseul Kim, Minh-Tri Ho, Hong-Goo Kang

Year : 2021

Publisher / Conference : EUSIPCO

Research area : Audio Signal Processing, Anomaly Detection

In this paper, we propose an anomaly detection algorithm for machine sounds with a deep complex network trained by self-supervision. Using the fact that phase continuity information is crucial for detecting abnormalities in time-series signals, our proposed algorithm utilizes the complex spectrum as an input and performs complex number arithmetic throughout the entire process. Since the usefulness of phase information can vary depending on the type of machine sound, we also apply an attention mechanism to control the weights of the complex and magnitude spectrum bottleneck features depending on the machine type. We train our network to perform a self-supervised task that classifies the machine identifier (id) of normal input sounds among multiple classes. At test time, an input signal is detected as anomalous if the trained model is unable to correctly classify the id. In other words, we determine the presence of an anomality when the output cross-entropy score of the multiclass identification task is lower than a pre-defined threshold. Experiments with the MIMII dataset show that the proposed algorithm has a much higher area under the curve (AUC) score than conventional magnitude spectrum-based algorithms.
전체 356
30 International Conference Yanjue Song, Doyeon Kim, Hong-Goo Kang, Nilesh Madhu "Spectrum-aware neural vocoder based on self-supervised learning for speech enhancement" in EUSIPCO, 2024
29 International Conference Hyewon Han, Naveen Kumar "A cross-talk robust multichannel VAD model for multiparty agent interactions trained using synthetic re-recordings" in Hands-free Speech Communication and Microphone Arrays (HSCMA, Satellite workshop in ICASSP), 2024
28 International Conference Yanjue Song, Doyeon Kim, Nilesh Madhu, Hong-Goo Kang "On the Disentanglement and Robustness of Self-Supervised Speech Representations" in International Conference on Electronics, Information, and Communication (ICEIC) (*awarded Best Paper), 2024
27 International Conference Yeona Hong, Miseul Kim, Woo-Jin Chung, Hong-Goo Kang "Contextual Learning for Missing Speech Automatic Speech Recognition" in International Conference on Electronics, Information, and Communication (ICEIC), 2024
26 International Conference Juhwan Yoon, Seyun Um, Woo-Jin Chung, Hong-Goo Kang "SC-ERM: Speaker-Centric Learning for Speech Emotion Recognition" in International Conference on Electronics, Information, and Communication (ICEIC), 2024
25 International Conference Hejung Yang, Hong-Goo Kang "On Fine-Tuning Pre-Trained Speech Models With EMA-Target Self-Supervised Loss" in ICASSP, 2024
24 International Conference Hong-Goo Kang, W. Bastiaan Kleijn, Jan Skoglund, Michael Chinen "Convolutional Transformer for Neural Speech Coding" in Audio Engineering Society Convention, 2023
23 International Conference Hong-Goo Kang, Jan Skoglund, W. Bastiaan Kleijn, Andrew Storus, Hengchin Yeh "A High-Rate Extension to Soundstream" in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2023
22 International Conference Zhenyu Piao, Hyungseob Lim, Miseul Kim, Hong-goo Kang "PDF-NET: Pitch-adaptive Dynamic Filter Network for Intra-gender Speaker Verification" in APSIPA ASC, 2023
21 International Conference Miseul Kim, Zhenyu Piao, Jihyun Lee, Hong-Goo Kang "BrainTalker: Low-Resource Brain-to-Speech Synthesis with Transfer Learning using Wav2Vec 2.0" in The IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 2023