Papers

A cross-talk robust multichannel VAD model for multiparty agent interactions trained using synthetic re-recordings

International Conference
2021~
작성자
dsp
작성일
2024-01-31 11:13
조회
1698
Authors : Hyewon Han, Naveen Kumar

Year : 2024

Publisher / Conference : Hands-free Speech Communication and Microphone Arrays (HSCMA, Satellite workshop in ICASSP)

Research area : Speech Signal Processing, Speech Enhancement

Presentation/Publication date : 2024.04.15

Related project : Internship at Disney Research

Presentation : Poster

In this work, we propose a novel cross-talk rejection framework for a multi-channel multi-talker setup for a live multiparty interactive show. Our far-field audio setup is required to be hands-free during live interaction and comprises four adjacent talkers with directional microphones in the same space. Such setups often introduce heavy cross-talk between channels, resulting in reduced automatic speech recognition (ASR) and natural language understanding (NLU) performance. To address this problem, we propose voice activity detection (VAD) model for all talkers using multichannel information, which is then used to filter audio for downstream tasks. We adopt a synthetic training data generation approach through playback and re-recording for such scenarios, simulating challenging speech overlap conditions. We train our models on this synthetic data and demonstrate that our approach outperforms single-channel VAD models and energy-based multi-channel VAD algorithm in various acoustic environments. In addition to VAD results, we also present multiparty ASR evaluation results to highlight the impact of using our VAD model for filtering audio in downstream tasks by significantly reducing the insertion error.
전체 369
161 International Conference Sangmin Lee, Woojin Chung, Hong-Goo Kang "LAMA-UT: Language Agnostic Multilingual ASR through Orthography Unification and Language-Specific Transliteration" in Association for the Advancement of Artificial Intelligence (AAAI), 2025
160 International Conference Juhwan Yoon, Hyungseob Lim, Hyeonjin Cha, Hong-Goo Kang "StylebookTTS: Zero-Shot Text-to-Speech Leveraging Unsupervised Style Representation" in APSIPA ASC, 2024
159 International Conference Doyeon Kim, Yanjue Song, Nilesh Madhu, Hong-Goo Kang "Enhancing Neural Speech Embeddings for Generative Speech Models" in APSIPA ASC, 2024
158 International Conference Miseul Kim, Soo-Whan Chung, Youna Ji, Hong-Goo Kang, Min-Seok Choi "Speak in the Scene: Diffusion-based Acoustic Scene Transfer toward Immersive Speech Generation" in INTERSPEECH, 2024
157 International Conference Seyun Um, Doyeon Kim, Hong-Goo Kang "PARAN: Variational Autoencoder-based End-to-End Articulation-to-Speech System for Speech Intelligibility" in INTERSPEECH, 2024
156 International Conference Jihyun Kim, Stijn Kindt, Nilesh Madhu, Hong-Goo Kang "Enhanced Deep Speech Separation in Clustered Ad Hoc Distributed Microphone Environments" in INTERSPEECH, 2024
155 International Conference Woo-Jin Chung, Hong-Goo Kang "Speaker-Independent Acoustic-to-Articulatory Inversion through Multi-Channel Attention Discriminator" in INTERSPEECH, 2024
154 International Conference Juhwan Yoon, Woo Seok Ko, Seyun Um, Sungwoong Hwang, Soojoong Hwang, Changhwan Kim, Hong-Goo Kang "UNIQUE : Unsupervised Network for Integrated Speech Quality Evaluation" in INTERSPEECH, 2024
153 International Conference Yanjue Song, Doyeon Kim, Hong-Goo Kang, Nilesh Madhu "Spectrum-aware neural vocoder based on self-supervised learning for speech enhancement" in EUSIPCO, 2024
152 International Conference Hyewon Han, Naveen Kumar "A cross-talk robust multichannel VAD model for multiparty agent interactions trained using synthetic re-recordings" in Hands-free Speech Communication and Microphone Arrays (HSCMA, Satellite workshop in ICASSP), 2024