Papers

Length-Normalized Representation Learning for Speech Signals

International Journal
2021~
작성자
dsp
작성일
2022-06-08 16:07
조회
1515
Authors : Kyungguen Byun, Seyun Um, Hong-Goo Kang

Year : 2022

Publisher / Conference : IEEE Access

Volume : 10

Page : 60362-60372

Research area : Speech Signal Processing, Text-to-Speech, Speech Recognition

Presentation/Publication date : 2022.06.08

Presentation : None

In this study, we proposed a length-normalized representation learning method for speech and text to address the inherent problem of sequence-to-sequence models when the input and output sequences exhibit different lengths. To this end, the representations were constrained to a fixed-length shape by including length normalization and de-normalization processes in the pre- and post-network architecture of the transformer-based self-supervised learning framework. Consequently, this enabled the direct modelling of the relationships between sequences with different length without attention or recurrent network between representation domains. This method not only achieved the aforementioned regularized length effect but also achieved a data augmentation effect that effectively handled differently time-scaled input features. The performance of the proposed length-normalized representations on downstream tasks for speaker and phoneme recognition was investigated to verify the effectiveness of this method over conventional representation methods. In addition, to demonstrate the applicability of the proposed representation method to sequence-to-sequence modeling, a unified speech recognition and text-to-speech (TTS) system was developed. The unified system achieved a high accuracy on a frame-wise phoneme prediction and exhibited a promising potential for the generation of high-quality synthesized speech signals on the TTS.
전체 360
6 International Journal Zainab Alhakeem, Se-In Jang, Hong-Goo Kang "Disentangled Representations in Local-Global Contexts for Arabic Dialect Identification" in Transactions on Audio, Speech, and Language Processing, 2024
5 International Journal Hyungchan Yoon, Changhwan Kim, Seyun Um, Hyun-Wook Yoon, Hong-Goo Kang "SC-CNN: Effective Speaker Conditioning Method for Zero-Shot Multi-Speaker Text-to-Speech Systems" in IEEE Signal Processing Letters, vol.30, pp.593-597, 2023
4 International Journal Jinyoung Lee, Hong-Goo Kang "Real-Time Neural Speech Enhancement Based on Temporal Refinement Network and Channel-Wise Gating Methods" in Digital Signal Processing, vol.133, 2023
3 International Journal Taemin Kim, Yejee Shin, Kyowon Kang, Kiho Kim, Gwanho Kim, Yunsu Byeon, Hwayeon Kim, Yuyan Gao, Jeong Ryong Lee, Geonhui Son, Taeseong Kim, Yohan Jun, Jihyun Kim, Jinyoung Lee, Seyun Um, Yoohwan Kwon, Byung Gwan Son, Myeongki Cho, Mingyu Sang, Jongwoon Shin, Kyubeen Kim, Jungmin Suh, Heekyeong Choi, Seokjun Hong, Huanyu Cheng, Hong-Goo Kang, Dosik Hwang & Ki Jun Yu "Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech interfaces" in Nature Communications, vol.13, 2022
2 International Journal Jinyoung Lee, Hong-Goo Kang "Two-Stage Refinement of Magnitude and Complex Spectra for Real-Time Speech Enhancement" in IEEE Signal Processing Letters, vol.29, pp.2188-2192, 2022
1 International Journal Kyungguen Byun, Seyun Um, Hong-Goo Kang "Length-Normalized Representation Learning for Speech Signals" in IEEE Access, vol.10, pp.60362-60372, 2022