Papers

On Fine-Tuning Pre-Trained Speech Models With EMA-Target Self-Supervised Loss

International Conference
2021~
작성자
김병현
작성일
2023-12-14 16:35
조회
1140
Authors : Hejung Yang, Hong-Goo Kang

Year : 2024

Publisher / Conference : ICASSP

Research area : Speech Signal Processing

Presentation/Publication date : 2024.04.19

Presentation : Poster

Representation models pre-trained on self-supervised objectives are often fine-tuned for solving downstream tasks.
However, fine-tuning can degrade the general knowledge that was originally built up by the pre-training, which could help prevent the model from overfitting given sparse fine-tuning data or bridge gaps between different domains.
We hypothesize that preserving this general knowledge in pre-trained models is crucial for improving performance on downstream tasks.
Based on this idea, we propose a novel method for fine-tuning self-supervised speech models that utilizes a self-supervised loss over the course of fine-tuning.
Then, an Exponential Moving Average (EMA) technique is applied to smoothly transition the domain of the model from the generalized to the task-oriented one.
We perform various downstream tasks using the proposed method, finding that our method improves performance on most of the tasks. Results show that our method induces the generalization ability of the model to be retained without overshadowing the downstream task performance.
전체 364
33 International Conference Miseul Kim, Soo-Whan Chung, Youna Ji, Hong-Goo Kang, Min-Seok Choi "Speak in the Scene: Diffusion-based Acoustic Scene Transfer toward Immersive Speech Generation" in INTERSPEECH, 2024
32 International Conference Woo-Jin Chung, Hong-Goo Kang "Speaker-Independent Acoustic-to-Articulatory Inversion through Multi-Channel Attention Discriminator" in INTERSPEECH, 2024
31 International Conference Juhwan Yoon, Woo Seok Ko, Seyun Um, Sungwoong Hwang, Soojoong Hwang, Changhwan Kim, Hong-Goo Kang "UNIQUE : Unsupervised Network for Integrated Speech Quality Evaluation" in INTERSPEECH, 2024
30 International Conference Yanjue Song, Doyeon Kim, Hong-Goo Kang, Nilesh Madhu "Spectrum-aware neural vocoder based on self-supervised learning for speech enhancement" in EUSIPCO, 2024
29 International Conference Hyewon Han, Naveen Kumar "A cross-talk robust multichannel VAD model for multiparty agent interactions trained using synthetic re-recordings" in Hands-free Speech Communication and Microphone Arrays (HSCMA, Satellite workshop in ICASSP), 2024
28 International Conference Yanjue Song, Doyeon Kim, Nilesh Madhu, Hong-Goo Kang "On the Disentanglement and Robustness of Self-Supervised Speech Representations" in International Conference on Electronics, Information, and Communication (ICEIC) (*awarded Best Paper), 2024
27 International Conference Yeona Hong, Miseul Kim, Woo-Jin Chung, Hong-Goo Kang "Contextual Learning for Missing Speech Automatic Speech Recognition" in International Conference on Electronics, Information, and Communication (ICEIC), 2024
26 International Conference Juhwan Yoon, Seyun Um, Woo-Jin Chung, Hong-Goo Kang "SC-ERM: Speaker-Centric Learning for Speech Emotion Recognition" in International Conference on Electronics, Information, and Communication (ICEIC), 2024
25 International Conference Hejung Yang, Hong-Goo Kang "On Fine-Tuning Pre-Trained Speech Models With EMA-Target Self-Supervised Loss" in ICASSP, 2024
24 International Conference Hong-Goo Kang, W. Bastiaan Kleijn, Jan Skoglund, Michael Chinen "Convolutional Transformer for Neural Speech Coding" in Audio Engineering Society Convention, 2023