Gradient-based active learning query strategy for end-to-end speech recognition

International Conference
2019-05-01 16:40
Authors : Yang Yuan, Soo-Whan Chung, Hong-Goo Kang

Year : 2019

Publisher / Conference : ICASSP

In this paper, we propose an effective active learning query strategy for an automatic speech recognition system with the aim of reducing the training cost. Generally, training a deep neural network with supervised learning requires a massive amount of labeled data to obtain excellent performance. However, labeling data is tedious and costly manual work. Active learning can solve this problem by choosing and only annotating informative instances, which presents better results even with less transcribed data. In this approach it is vitally important to accurately select informative samples. Based on the preliminary experiment results that true gradient length has the best performance in terms of measuring sample informativeness in ideal conditions, we propose utilizing both uncertainty and the expected gradient length criterion to approximate the true gradient length using a neural network. The experiment results show that our proposed method is superior to the conventional individual criterion when applied to a phoneme-based speech recognition system, and it has both a faster convergence speed and the greatest loss reduction in both clean and noisy conditions.
전체 327
27 International Conference Minh-Tri Ho, Jinyoung Lee, Bong-Ki Lee, Dong Hoon Yi, Hong-Goo Kang "A Cross-channel Attention-based Wave-U-Net for Multi-channel Speech Enhancement" in INTERSPEECH, 2020
26 International Conference Se-Yun Um, Sangshin Oh, Kyungguen Byun, Inseon Jang, ChungHyun Ahn, Hong-Goo Kang "Emotional Speech Synthesis with Rich and Granularized Control" in ICASSP, 2020
25 International Conference Min-Jae Hwang, Eunwoo Song, Ryuichi Yamamoto, Frank Soong, Hong-Goo Kang "Improving LPCNet-based Text-to-Speech with Linear Prediction-structured Mixture Density Network" in ICASSP, 2020
24 International Conference Hyeonjoo Kang, Young-Sun Joo, Inseon Jang, Chunghyun Ahn, Hong-Goo Kang "A Study on Acoustic Parameter Selection Strategies to Improve Deep Learning-Based Speech Synthesis" in APSIPA, 2019
23 International Conference Min-Jae Hwang, Hong-Goo Kang "Parameter enhancement for MELP speech codec in noisy communication environment" in INTERSPEECH, 2019
22 International Conference Keulbit Kim, Jinkyu Lee, Jan Skoglund, Hong-Goo Kang "Model Order Selection for Wind Noise Reduction in Non-negative Matrix Factorization" in ITC-CSCC, 2019
21 International Conference Ohsung Kwon, Inseon Jang, ChungHyun Ahn, Hong-Goo Kang "Emotional Speech Synthesis Based on Style Embedded Tacotron2 Framework" in ITC-CSCC, 2019
20 International Conference Kyungguen Byun, Eunwoo Song, Jinseob Kim, Jae-Min Kim, Hong-Goo Kang "Excitation-by-SampleRNN Model for Text-to-Speech" in ITC-CSCC, 2019
19 International Conference Yang Yuan, Soo-Whan Chung, Hong-Goo Kang "Gradient-based active learning query strategy for end-to-end speech recognition" in ICASSP, 2019
18 International Conference Soo-Whan Chung, Joon Son Chung, Hong-Goo Kang "Perfect match: Improved cross-modal embeddings for audio-visual synchronisation" in ICASSP, 2019