Papers

Stacked U-Net with High-level Feature Transfer for Parameter Efficient Speech Enhancement

International Conference
2021~
작성자
김화연
작성일
2021-09-01 14:48
조회
2542
Authors : Jinyoung Lee and Hong-Goo Kang

Year : 2021

Publisher / Conference : APSIPA ASC

Research area : Speech Signal Processing, Speech Enhancement

In this paper, we present a stacked U-Net structure-based speech enhancement algorithm with parameter reduction and real-time processing. To significantly reduce the number of network parameters, we propose a stacked structure in which several shallow U-Nets with fewer convolutional layer channels are cascaded. However, simply stacking the small-scale U-Nets cannot sufficiently compensate for the performance loss caused by the lack of parameters. To overcome this problem, we propose a high-level feature transfer method that passes all the multi-channel output features, which are obtained before passing through the intermediate output layer, to the next stage.Furthermore, our proposed model can process analysis frames with short lengths because its down-sampling and up-sampling blocks are much smaller than the conventional Wave U-Net method; theses smaller layers make our proposed model suitable for low-delay online processing. Experiments show that our proposed method outperforms the conventional Wave U-Net method on almost all objective measures and requires only 7.21%of the network parameters when compared to the conventional method. In addition, our model can be successfully implemented in real time on both GPU and CPU environments.
전체 364
354 International Conference Yanjue Song, Doyeon Kim, Nilesh Madhu, Hong-Goo Kang "On the Disentanglement and Robustness of Self-Supervised Speech Representations" in International Conference on Electronics, Information, and Communication (ICEIC) (*awarded Best Paper), 2024
353 International Conference Yeona Hong, Miseul Kim, Woo-Jin Chung, Hong-Goo Kang "Contextual Learning for Missing Speech Automatic Speech Recognition" in International Conference on Electronics, Information, and Communication (ICEIC), 2024
352 International Conference Juhwan Yoon, Seyun Um, Woo-Jin Chung, Hong-Goo Kang "SC-ERM: Speaker-Centric Learning for Speech Emotion Recognition" in International Conference on Electronics, Information, and Communication (ICEIC), 2024
351 International Conference Hejung Yang, Hong-Goo Kang "On Fine-Tuning Pre-Trained Speech Models With EMA-Target Self-Supervised Loss" in ICASSP, 2024
350 International Journal Zainab Alhakeem, Se-In Jang, Hong-Goo Kang "Disentangled Representations in Local-Global Contexts for Arabic Dialect Identification" in Transactions on Audio, Speech, and Language Processing, 2024
349 International Conference Hong-Goo Kang, W. Bastiaan Kleijn, Jan Skoglund, Michael Chinen "Convolutional Transformer for Neural Speech Coding" in Audio Engineering Society Convention, 2023
348 International Conference Hong-Goo Kang, Jan Skoglund, W. Bastiaan Kleijn, Andrew Storus, Hengchin Yeh "A High-Rate Extension to Soundstream" in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2023
347 International Conference Zhenyu Piao, Hyungseob Lim, Miseul Kim, Hong-goo Kang "PDF-NET: Pitch-adaptive Dynamic Filter Network for Intra-gender Speaker Verification" in APSIPA ASC, 2023
346 International Conference WooSeok Ko, Seyun Um, Zhenyu Piao, Hong-goo Kang "Consideration of Varying Training Lengths for Short-Duration Speaker Verification" in APSIPA ASC, 2023
345 International Journal Hyungchan Yoon, Changhwan Kim, Seyun Um, Hyun-Wook Yoon, Hong-Goo Kang "SC-CNN: Effective Speaker Conditioning Method for Zero-Shot Multi-Speaker Text-to-Speech Systems" in IEEE Signal Processing Letters, vol.30, pp.593-597, 2023