Papers

A Joint Learning Algorithm for Complex-Valued T-F Masks in Deep Learning-Based Single-Channel Speech Enhancement Systems

International Journal
2016~2020
작성자
이진영
작성일
2019-06-01 22:12
조회
1897
Authors : Jinkyu Lee, Hong-Goo Kang

Year : 2019

Publisher / Conference : IEEE/ACM Transactions on Audio, Speech, and Language Processing

Volume : 27, issue 6

Page : 1098-1108

This paper presents a joint learning algorithm for complex-valued time-frequency (T-F) masks in single-channel speech enhancement systems. Most speech enhancement algorithms operating in a single-channel microphone environment aim to enhance the magnitude component in a T-F domain, while the input noisy phase component is used directly without any processing. Consequently, the mismatch between the processed magnitude and the unprocessed phase degrades the sound quality. To address this issue, a learning method of targeting a T-F mask that is defined in a complex domain has recently been proposed. However, due to a wide dynamic range and an irregular spectrogram pattern of the complex-valued T-F mask, the learning process is difficult even with a large-scale deep learning network. Moreover, the learning process targeting the T-F mask itself does not directly minimize the distortion in spectra or time domains. In order to address these concerns, we focus on three issues: 1) an effective estimation of complex numbers with a wide dynamic range; 2) a learning method that is directly related to speech enhancement performance; and 3) a way to resolve the mismatch between the estimated magnitude and phase spectra. In this study, we propose objective functions that can solve each of these issues and train the network by minimizing them with a joint learning framework. The evaluation results demonstrate that the proposed learning algorithm achieves significant performance improvement in various objective measures and subjective preference listening test.
전체 363
323 International Journal Kyungguen Byun, Seyun Um, Hong-Goo Kang "Length-Normalized Representation Learning for Speech Signals" in IEEE Access, vol.10, pp.60362-60372, 2022
322 International Conference Doyeon Kim, Hyewon Han, Hyeon-Kyeong Shin, Soo-Whan Chung, Hong-Goo Kang "Phase Continuity: Learning Derivatives of Phase Spectrum for Speech Enhancement" in ICASSP, 2022
321 International Conference Chanwoo Lee, Hyungseob Lim, Jihyun Lee, Inseon Jang, Hong-Goo Kang "Progressive Multi-Stage Neural Audio Coding with Guided References" in ICASSP, 2022
320 International Conference Jihyun Lee, Hyungseob Lim, Chanwoo Lee, Inseon Jang, Hong-Goo Kang "Adversarial Audio Synthesis Using a Harmonic-Percussive Discriminator" in ICASSP, 2022
319 International Conference Jinyoung Lee and Hong-Goo Kang "Stacked U-Net with High-level Feature Transfer for Parameter Efficient Speech Enhancement" in APSIPA ASC, 2021
318 International Conference Huu-Kim Nguyen, Kihyuk Jeong, Seyun Um, Min-Jae Hwang, Eunwoo Song, Hong-Goo Kang "LiteTTS: A Decoder-free Light-weight Text-to-wave Synthesis Based on Generative Adversarial Networks" in INTERSPEECH, 2021
317 International Conference Zainab Alhakeem, Yoohwan Kwon, Hong-Goo Kang "Disentangled Representations for Arabic Dialect Identification based on Supervised Clustering with Triplet Loss" in EUSIPCO, 2021
316 International Conference Miseul Kim, Minh-Tri Ho, Hong-Goo Kang "Self-supervised Complex Network for Machine Sound Anomaly Detection" in EUSIPCO, 2021
315 International Conference Kihyuk Jeong, Huu-Kim Nguyen, Hong-Goo Kang "A Fast and Lightweight Text-To-Speech Model with Spectrum and Waveform Alignment Algorithms" in EUSIPCO, 2021
314 International Conference Jiyoung Lee*, Soo-Whan Chung*, Sunok Kim, Hong-Goo Kang**, Kwanghoon Sohn** "Looking into Your Speech: Learning Cross-modal Affinity for Audio-visual Speech Separation" in CVPR, 2021