Papers

Gradient-based active learning query strategy for end-to-end speech recognition

International Conference
2016~2020
작성자
한혜원
작성일
2019-05-01 16:40
조회
2404
Authors : Yang Yuan, Soo-Whan Chung, Hong-Goo Kang

Year : 2019

Publisher / Conference : ICASSP

In this paper, we propose an effective active learning query strategy for an automatic speech recognition system with the aim of reducing the training cost. Generally, training a deep neural network with supervised learning requires a massive amount of labeled data to obtain excellent performance. However, labeling data is tedious and costly manual work. Active learning can solve this problem by choosing and only annotating informative instances, which presents better results even with less transcribed data. In this approach it is vitally important to accurately select informative samples. Based on the preliminary experiment results that true gradient length has the best performance in terms of measuring sample informativeness in ideal conditions, we propose utilizing both uncertainty and the expected gradient length criterion to approximate the true gradient length using a neural network. The experiment results show that our proposed method is superior to the conventional individual criterion when applied to a phoneme-based speech recognition system, and it has both a faster convergence speed and the greatest loss reduction in both clean and noisy conditions.
전체 365
109 International Conference Soo-Whan Chung, Hong-Goo Kang, Joon Son Chung "Seeing Voices and Hearing Voices: Learning Discriminative Embeddings Using Cross-Modal Self-Supervision" in INTERSPEECH, 2020
108 International Conference Hyewon Han, Soo-Whan Chung, Hong-Goo Kang "MIRNet: Learning multiple identities representations in overlapped speech" in INTERSPEECH, 2020
107 International Conference Yoohwan Kwon, Soo-Whan Chung, Hong-Goo Kang "Intra-Class Variation Reduction of Speaker Representation in Disentanglement Framework" in INTERSPEECH, 2020
106 International Conference Minh-Tri Ho, Jinyoung Lee, Bong-Ki Lee, Dong Hoon Yi, Hong-Goo Kang "A Cross-channel Attention-based Wave-U-Net for Multi-channel Speech Enhancement" in INTERSPEECH, 2020
105 International Conference Seyun Um, Sangshin Oh, Kyungguen Byun, Inseon Jang, ChungHyun Ahn, Hong-Goo Kang "Emotional Speech Synthesis with Rich and Granularized Control" in ICASSP, 2020
104 International Conference Min-Jae Hwang, Eunwoo Song, Ryuichi Yamamoto, Frank Soong, Hong-Goo Kang "Improving LPCNet-based Text-to-Speech with Linear Prediction-structured Mixture Density Network" in ICASSP, 2020
103 International Conference Hyeonjoo Kang, Young-Sun Joo, Inseon Jang, Chunghyun Ahn, Hong-Goo Kang "A Study on Acoustic Parameter Selection Strategies to Improve Deep Learning-Based Speech Synthesis" in APSIPA, 2019
102 International Conference Min-Jae Hwang, Hong-Goo Kang "Parameter enhancement for MELP speech codec in noisy communication environment" in INTERSPEECH, 2019
101 International Conference Keulbit Kim, Jinkyu Lee, Jan Skoglund, Hong-Goo Kang "Model Order Selection for Wind Noise Reduction in Non-negative Matrix Factorization" in ITC-CSCC, 2019
100 International Conference Ohsung Kwon, Inseon Jang, ChungHyun Ahn, Hong-Goo Kang "Emotional Speech Synthesis Based on Style Embedded Tacotron2 Framework" in ITC-CSCC, 2019