Papers

A Joint Learning Algorithm for Complex-Valued T-F Masks in Deep Learning-Based Single-Channel Speech Enhancement Systems

International Journal
2016~2020
작성자
이진영
작성일
2019-06-01 22:12
조회
2898
Authors : Jinkyu Lee, Hong-Goo Kang

Year : 2019

Publisher / Conference : IEEE/ACM Transactions on Audio, Speech, and Language Processing

Volume : 27, issue 6

Page : 1098-1108

This paper presents a joint learning algorithm for complex-valued time-frequency (T-F) masks in single-channel speech enhancement systems. Most speech enhancement algorithms operating in a single-channel microphone environment aim to enhance the magnitude component in a T-F domain, while the input noisy phase component is used directly without any processing. Consequently, the mismatch between the processed magnitude and the unprocessed phase degrades the sound quality. To address this issue, a learning method of targeting a T-F mask that is defined in a complex domain has recently been proposed. However, due to a wide dynamic range and an irregular spectrogram pattern of the complex-valued T-F mask, the learning process is difficult even with a large-scale deep learning network. Moreover, the learning process targeting the T-F mask itself does not directly minimize the distortion in spectra or time domains. In order to address these concerns, we focus on three issues: 1) an effective estimation of complex numbers with a wide dynamic range; 2) a learning method that is directly related to speech enhancement performance; and 3) a way to resolve the mismatch between the estimated magnitude and phase spectra. In this study, we propose objective functions that can solve each of these issues and train the network by minimizing them with a joint learning framework. The evaluation results demonstrate that the proposed learning algorithm achieves significant performance improvement in various objective measures and subjective preference listening test.
전체 367
307 International Conference Hyeon-Kyeong Shin, Hyewon Han, Kyungguen Byun, Hong-Goo Kang "Speaker-invariant Psychological Stress Detection Using Attention-based Network" in APSIPA, 2020
306 International Conference Min-Jae Hwang, Frank Soong, Eunwoo Song, Xi Wang, Hyeonjoo Kang, Hong-Goo Kang "LP-WaveNet: Linear Prediction-based WaveNet Speech Synthesis" in APSIPA, 2020
305 International Conference Hyungseob Lim, Suhyeon Oh, Kyungguen Byun, Hong-Goo Kang "A Study on Conditional Features for a Flow-based Neural Vocoder" in Asilomar Conference on Signals, Systems, and Computers, 2020
304 International Conference Soo-Whan Chung, Soyeon Choe, Joon Son Chung, Hong-Goo Kang "FaceFilter: Audio-visual speech separation using still images" in INTERSPEECH (*awarded Best Student Paper), 2020
303 International Conference Soo-Whan Chung, Hong-Goo Kang, Joon Son Chung "Seeing Voices and Hearing Voices: Learning Discriminative Embeddings Using Cross-Modal Self-Supervision" in INTERSPEECH, 2020
302 International Conference Hyewon Han, Soo-Whan Chung, Hong-Goo Kang "MIRNet: Learning multiple identities representations in overlapped speech" in INTERSPEECH, 2020
301 International Conference Yoohwan Kwon, Soo-Whan Chung, Hong-Goo Kang "Intra-Class Variation Reduction of Speaker Representation in Disentanglement Framework" in INTERSPEECH, 2020
300 International Conference Minh-Tri Ho, Jinyoung Lee, Bong-Ki Lee, Dong Hoon Yi, Hong-Goo Kang "A Cross-channel Attention-based Wave-U-Net for Multi-channel Speech Enhancement" in INTERSPEECH, 2020
299 International Journal Young-Sun Joo, Hanbin Bae, Young-Ik Kim, Hoon-Young Cho, Hong-Goo Kang "Effective Emotion Transplantation in an End-to-End Text-to-Speech System" in IEEE Access, vol.8, pp.161713-161719, 2020
298 Domestic Journal 권유환, 정수환, 강홍구 "화자 인식을 위한 적대학습 기반음성 분리 프레임워크에 대한 연구" in 한국음향학회지, vol.39, 제 5호, pp.447-453, 2020