Papers

Efficient deep neural networks for speech synthesis using bottleneck features

International Conference
2016~2020
작성자
한혜원
작성일
2016-12-01 16:29
조회
3892
Authors : Young-Sun Joo, Won-Suk Jun, Hong-Goo Kang

Year : 2016

Publisher / Conference : APSIPA

This paper proposes a cascading deep neural network (DNN) structure for speech synthesis system that consists of text-to-bottleneck (TTB) and bottleneck-to-speech (BTS) models. Unlike conventional single structure that requires a large database to find complicated mapping rules between linguistic and acoustic features, the proposed structure is very effective even if the available training database is inadequate. The bottle-neck feature utilized in the proposed approach represents the characteristics of linguistic features and its average acoustic features of several speakers. Therefore, it is more efficient to learn a mapping rule between bottleneck and acoustic features than to learn directly a mapping rule between linguistic and acoustic features. Experimental results show that the learning capability of the proposed structure is much higher than that of the conventional structures. Objective and subjective listening test results also verify the superiority of the proposed structure.
전체 372
312 International Conference Huu-Kim Nguyen, Kihyuk Jeong, Hong-Goo Kang "Fast and Lightweight Speech Synthesis Model based on FastSpeech2" in ITC-CSCC, 2021
311 International Conference Yoohwan Kwon*, Hee-Soo Heo*, Bong-Jin Lee, Joon Son Chung "The ins and outs of speaker recognition: lessons from VoxSRC 2020" in ICASSP, 2021
310 International Conference You Jin Kim, Hee Soo Heo, Soo-Whan Chung, Bong-Jin Lee "End-to-end Lip Synchronisation Based on Pattern Classification" in IEEE Spoken Language Technology Workshop (SLT), 2020
309 International Conference Seong Min Kye, Yoohwan Kwon, Joon Son Chung "Cross Attentive Pooling for Speaker Verification" in IEEE Spoken Language Technology Workshop (SLT), 2020
308 International Conference Suhyeon Oh, Hyungseob Lim, Kyungguen Byun, Min-Jae Hwang, Eunwoo Song, Hong-Goo Kang "ExcitGlow: Improving a WaveGlow-based Neural Vocoder with Linear Prediction Analysis" in APSIPA (*awarded Best Paper), 2020
307 International Conference Hyeon-Kyeong Shin, Hyewon Han, Kyungguen Byun, Hong-Goo Kang "Speaker-invariant Psychological Stress Detection Using Attention-based Network" in APSIPA, 2020
306 International Conference Min-Jae Hwang, Frank Soong, Eunwoo Song, Xi Wang, Hyeonjoo Kang, Hong-Goo Kang "LP-WaveNet: Linear Prediction-based WaveNet Speech Synthesis" in APSIPA, 2020
305 International Conference Hyungseob Lim, Suhyeon Oh, Kyungguen Byun, Hong-Goo Kang "A Study on Conditional Features for a Flow-based Neural Vocoder" in Asilomar Conference on Signals, Systems, and Computers, 2020
304 International Conference Soo-Whan Chung, Soyeon Choe, Joon Son Chung, Hong-Goo Kang "FaceFilter: Audio-visual speech separation using still images" in INTERSPEECH (*awarded Best Student Paper), 2020
303 International Conference Soo-Whan Chung, Hong-Goo Kang, Joon Son Chung "Seeing Voices and Hearing Voices: Learning Discriminative Embeddings Using Cross-Modal Self-Supervision" in INTERSPEECH, 2020