Papers

A Unified Framework for the Generation of Glottal Signals in Deep Learning-based Parametric Speech Synthesis Systems

International Conference
2016~2020
작성자
한혜원
작성일
2018-09-01 16:37
조회
2335
Authors : Min-Jae Hwang, Eunwoo Song, Jin-Seob Kim, Hong-Goo Kang

Year : 2018

Publisher / Conference : INTERSPEECH

In this paper, we propose a unified training framework for the generation of glottal signals in deep learning (DL)-based parametric speech synthesis systems. The glottal vocoding-based speech synthesis system, especially the modeling-by-generation (MbG) structure that we proposed recently, significantly improves the naturalness of synthesized speech by faithfully representing the noise component of the glottal excitation with an additional DL structure. Because the MbG method introduces a multistage processing pipeline, however, its training process is complicated and inefficient. To alleviate this problem, we propose a unified training approach that directly generates speech parameters by merging all the required models, such as acoustic, glottal and noise models into a single unified network. Considering the fact that noise analysis should be performed after training the glottal model, we also propose a stochastic noise analysis method that enables noise modeling to be included in the unified training process by iteratively analyzing the noise component in every epoch. Both objective and subjective test results verify the superiority of the proposed algorithm compared to conventional methods.
전체 364
294 International Conference Seyun Um, Sangshin Oh, Kyungguen Byun, Inseon Jang, ChungHyun Ahn, Hong-Goo Kang "Emotional Speech Synthesis with Rich and Granularized Control" in ICASSP, 2020
293 International Conference Min-Jae Hwang, Eunwoo Song, Ryuichi Yamamoto, Frank Soong, Hong-Goo Kang "Improving LPCNet-based Text-to-Speech with Linear Prediction-structured Mixture Density Network" in ICASSP, 2020
292 International Journal Soo-Whan Chung, Joon Son Chung, Hong Goo Kang "Perfect Match: Self-Supervised Embeddings for Cross-Modal Retrieval" in IEEE Journal of Selected Topics in Signal Processing, vol.14, issue 3, 2020
291 International Conference Hyeonjoo Kang, Young-Sun Joo, Inseon Jang, Chunghyun Ahn, Hong-Goo Kang "A Study on Acoustic Parameter Selection Strategies to Improve Deep Learning-Based Speech Synthesis" in APSIPA, 2019
290 International Journal Ohsung Kwon, Inseon Jang, ChungHyun Ahn, Hong-Goo Kang "An Effective Style Token Weight Control Technique for End-to-End Emotional Speech Synthesis" in IEEE Signal Processing Letters, vol.26, issue 9, pp.1383-1387, 2019
289 International Conference Min-Jae Hwang, Hong-Goo Kang "Parameter enhancement for MELP speech codec in noisy communication environment" in INTERSPEECH, 2019
288 Domestic Journal 오상신, 엄세연, 장인선, 안충현, 강홍구 "k-평균 알고리즘을 활용한 음성의 대표 감정 스타일 결정 방법" in 한국음향학회지, vol.38, 제 5호, pp.614-620, 2019
287 International Journal Jinkyu Lee, Hong-Goo Kang "A Joint Learning Algorithm for Complex-Valued T-F Masks in Deep Learning-Based Single-Channel Speech Enhancement Systems" in IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol.27, issue 6, pp.1098-1108, 2019
286 International Conference Keulbit Kim, Jinkyu Lee, Jan Skoglund, Hong-Goo Kang "Model Order Selection for Wind Noise Reduction in Non-negative Matrix Factorization" in ITC-CSCC, 2019
285 International Conference Ohsung Kwon, Inseon Jang, ChungHyun Ahn, Hong-Goo Kang "Emotional Speech Synthesis Based on Style Embedded Tacotron2 Framework" in ITC-CSCC, 2019