Papers

Length-Normalized Representation Learning for Speech Signals

International Journal
2021~
작성자
dsp
작성일
2022-06-08 16:07
조회
1663
Authors : Kyungguen Byun, Seyun Um, Hong-Goo Kang

Year : 2022

Publisher / Conference : IEEE Access

Volume : 10

Page : 60362-60372

Research area : Speech Signal Processing, Text-to-Speech, Speech Recognition

Presentation/Publication date : 2022.06.08

Presentation : None

In this study, we proposed a length-normalized representation learning method for speech and text to address the inherent problem of sequence-to-sequence models when the input and output sequences exhibit different lengths. To this end, the representations were constrained to a fixed-length shape by including length normalization and de-normalization processes in the pre- and post-network architecture of the transformer-based self-supervised learning framework. Consequently, this enabled the direct modelling of the relationships between sequences with different length without attention or recurrent network between representation domains. This method not only achieved the aforementioned regularized length effect but also achieved a data augmentation effect that effectively handled differently time-scaled input features. The performance of the proposed length-normalized representations on downstream tasks for speaker and phoneme recognition was investigated to verify the effectiveness of this method over conventional representation methods. In addition, to demonstrate the applicability of the proposed representation method to sequence-to-sequence modeling, a unified speech recognition and text-to-speech (TTS) system was developed. The unified system achieved a high accuracy on a frame-wise phoneme prediction and exhibited a promising potential for the generation of high-quality synthesized speech signals on the TTS.
전체 364
364 Domestic Conference 최웅집, 김병현, 강홍구 "자기 지도 학습 특징을 활용한 음성 신호의 논 블라인드 대역폭 확장" in 대한전자공학회 2024년도 하계종합학술대회, 2024
363 Domestic Conference Yeona Hong, Woo-Jin Chung, Hong-Goo Kang "효율적인 양자화 기법을 통한 DNN 기반 화자 인식 모델 최적화" in 대한전자공학회 2024년도 하계종합학술대회, 2024
362 Domestic Conference 김병현, 강홍구, 장인선 "저지연 조건하의 심층신경망 기반 음성 압축" in 한국방송·미디어공학회 2024년 하계학술대회, 2024
361 International Conference Miseul Kim, Soo-Whan Chung, Youna Ji, Hong-Goo Kang, Min-Seok Choi "Speak in the Scene: Diffusion-based Acoustic Scene Transfer toward Immersive Speech Generation" in INTERSPEECH, 2024
360 International Conference Seyun Um, Doyeon Kim, Hong-Goo Kang "PARAN: Variational Autoencoder-based End-to-End Articulation-to-Speech System for Speech Intelligibility" in INTERSPEECH, 2024
359 International Conference Jihyun Kim, Stijn Kindt, Nilesh Madhu, Hong-Goo Kang "Enhanced Deep Speech Separation in Clustered Ad Hoc Distributed Microphone Environments" in INTERSPEECH, 2024
358 International Conference Woo-Jin Chung, Hong-Goo Kang "Speaker-Independent Acoustic-to-Articulatory Inversion through Multi-Channel Attention Discriminator" in INTERSPEECH, 2024
357 International Conference Juhwan Yoon, Woo Seok Ko, Seyun Um, Sungwoong Hwang, Soojoong Hwang, Changhwan Kim, Hong-Goo Kang "UNIQUE : Unsupervised Network for Integrated Speech Quality Evaluation" in INTERSPEECH, 2024
356 International Conference Yanjue Song, Doyeon Kim, Hong-Goo Kang, Nilesh Madhu "Spectrum-aware neural vocoder based on self-supervised learning for speech enhancement" in EUSIPCO, 2024
355 International Conference Hyewon Han, Naveen Kumar "A cross-talk robust multichannel VAD model for multiparty agent interactions trained using synthetic re-recordings" in Hands-free Speech Communication and Microphone Arrays (HSCMA, Satellite workshop in ICASSP), 2024