Papers

Gradient-based active learning query strategy for end-to-end speech recognition

International Conference
2016~2020
작성자
한혜원
작성일
2019-05-01 16:40
조회
2793
Authors : Yang Yuan, Soo-Whan Chung, Hong-Goo Kang

Year : 2019

Publisher / Conference : ICASSP

In this paper, we propose an effective active learning query strategy for an automatic speech recognition system with the aim of reducing the training cost. Generally, training a deep neural network with supervised learning requires a massive amount of labeled data to obtain excellent performance. However, labeling data is tedious and costly manual work. Active learning can solve this problem by choosing and only annotating informative instances, which presents better results even with less transcribed data. In this approach it is vitally important to accurately select informative samples. Based on the preliminary experiment results that true gradient length has the best performance in terms of measuring sample informativeness in ideal conditions, we propose utilizing both uncertainty and the expected gradient length criterion to approximate the true gradient length using a neural network. The experiment results show that our proposed method is superior to the conventional individual criterion when applied to a phoneme-based speech recognition system, and it has both a faster convergence speed and the greatest loss reduction in both clean and noisy conditions.
전체 370
370 International Conference Yeona Hong, Hyewon Han, Woo-jin Chung, Hong-Goo Kang "StableQuant: Layer Adaptive Post-Training Quantization for Speech Foundation Models" in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2025
369 International Conference Sangmin Lee, Woojin Chung, Hong-Goo Kang "LAMA-UT: Language Agnostic Multilingual ASR through Orthography Unification and Language-Specific Transliteration" in Association for the Advancement of Artificial Intelligence (AAAI), 2025
368 International Journal Hyewon Han, Xiulian Peng, Doyeon Kim, Yan Lu, Hong-Goo Kang "Dual-Branch Guidance Encoder for Robust Acoustic Echo Suppression" in IEEE Transactions on Audio, Speech and Language Processing (TASLP), 2024
367 International Journal Hyungseob Lim, Jihyun Lee, Byeong Hyeon Kim, Inseon Jang, Hong-Goo Kang "Perceptual Neural Audio Coding with Modified Discrete Cosine Transform" in IEEE Journal of Special Topics in Signal Processing (JSTSP), 2025
366 International Conference Juhwan Yoon, Hyungseob Lim, Hyeonjin Cha, Hong-Goo Kang "StylebookTTS: Zero-Shot Text-to-Speech Leveraging Unsupervised Style Representation" in APSIPA ASC, 2024
365 International Conference Doyeon Kim, Yanjue Song, Nilesh Madhu, Hong-Goo Kang "Enhancing Neural Speech Embeddings for Generative Speech Models" in APSIPA ASC, 2024
364 Domestic Conference 최웅집, 김병현, 강홍구 "자기 지도 학습 특징을 활용한 음성 신호의 논 블라인드 대역폭 확장" in 대한전자공학회 2024년도 하계종합학술대회, 2024
363 Domestic Conference 홍연아, 정우진, 강홍구 "효율적인 양자화 기법을 통한 DNN 기반 화자 인식 모델 최적화" in 대한전자공학회 2024년도 하계종합학술대회, 2024
362 Domestic Conference 김병현, 강홍구, 장인선 "저지연 조건하의 심층신경망 기반 음성 압축" in 한국방송·미디어공학회 2024년 하계학술대회, 2024
361 International Conference Miseul Kim, Soo-Whan Chung, Youna Ji, Hong-Goo Kang, Min-Seok Choi "Speak in the Scene: Diffusion-based Acoustic Scene Transfer toward Immersive Speech Generation" in INTERSPEECH, 2024