Papers

Applying A Speaker-dependent Speech Compression Technique to Concatenative TTS Synthesizers

International Journal
2006~2010
작성자
이진영
작성일
2007-02-01 13:32
조회
2242
Authors : Chang-Heon Lee, Sung-Kyo Jung, Hong-Goo Kang

Year : 2007

Publisher / Conference : IEEE Transactions on Audio, Speech, and Language Processing

Volume : 15, 2

Page : 632-640

This paper proposes a new speaker-dependent coding algorithm to efficiently compress a large speech database for corpus-based concatenative text-to-speech (TTS) engines while maintaining high fidelity. To achieve a high compression ratio and meet the fundamental requirements of concatenative TTS synthesizers, such as partial segment decoding and random access capability, we adopt a nonpredictive analysis-by-synthesis scheme for speaker-dependent parameter estimation and quantization. The spectral coefficients are quantized by using a memoryless split vector quantization (VQ) approach that does not use frame correlation. Considering that excitation signals of a specific speaker show low intra-variation especially in the voiced regions, the conventional adaptive codebook for pitch prediction is replaced by a speaker-dependent pitch-pulse codebook trained by a corpus of single-speaker speech signals. To further improve the coding efficiency, the proposed coder flexibly combines nonpredictive and predictive type method considering the structure of the TTS system. By applying the proposed algorithm to a Korean TTS system, we could obtain comparable quality to the G.729 speech coder and satisfy all the requirements that TTS system needs. The results are verified by both objective and subjective quality measurements. In addition, the decoding complexity of the proposed coder is around 55% lower than that of G.729 annex A
전체 370
370 International Conference Yeona Hong, Hyewon Han, Woo-jin Chung, Hong-Goo Kang "StableQuant: Layer Adaptive Post-Training Quantization for Speech Foundation Models" in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2025
369 International Conference Sangmin Lee, Woojin Chung, Hong-Goo Kang "LAMA-UT: Language Agnostic Multilingual ASR through Orthography Unification and Language-Specific Transliteration" in Association for the Advancement of Artificial Intelligence (AAAI), 2025
368 International Journal Hyewon Han, Xiulian Peng, Doyeon Kim, Yan Lu, Hong-Goo Kang "Dual-Branch Guidance Encoder for Robust Acoustic Echo Suppression" in IEEE Transactions on Audio, Speech and Language Processing (TASLP), 2024
367 International Journal Hyungseob Lim, Jihyun Lee, Byeong Hyeon Kim, Inseon Jang, Hong-Goo Kang "Perceptual Neural Audio Coding with Modified Discrete Cosine Transform" in IEEE Journal of Special Topics in Signal Processing (JSTSP), 2025
366 International Conference Juhwan Yoon, Hyungseob Lim, Hyeonjin Cha, Hong-Goo Kang "StylebookTTS: Zero-Shot Text-to-Speech Leveraging Unsupervised Style Representation" in APSIPA ASC, 2024
365 International Conference Doyeon Kim, Yanjue Song, Nilesh Madhu, Hong-Goo Kang "Enhancing Neural Speech Embeddings for Generative Speech Models" in APSIPA ASC, 2024
364 Domestic Conference 최웅집, 김병현, 강홍구 "자기 지도 학습 특징을 활용한 음성 신호의 논 블라인드 대역폭 확장" in 대한전자공학회 2024년도 하계종합학술대회, 2024
363 Domestic Conference 홍연아, 정우진, 강홍구 "효율적인 양자화 기법을 통한 DNN 기반 화자 인식 모델 최적화" in 대한전자공학회 2024년도 하계종합학술대회, 2024
362 Domestic Conference 김병현, 강홍구, 장인선 "저지연 조건하의 심층신경망 기반 음성 압축" in 한국방송·미디어공학회 2024년 하계학술대회, 2024
361 International Conference Miseul Kim, Soo-Whan Chung, Youna Ji, Hong-Goo Kang, Min-Seok Choi "Speak in the Scene: Diffusion-based Acoustic Scene Transfer toward Immersive Speech Generation" in INTERSPEECH, 2024