Phase-Sensitive Joint Learning Algorithms for Deep Learning-Based Speech Enhancement

International Journal
2018-08-01 22:09
Authors : Jinkyu Lee, Jan Skoglund, Turaj Shabestary, Hong-Goo Kang

Year : 2018

Publisher / Conference : IEEE Signal Processing Letters

Volume : 25, issue 8

Page : 1276-1280

This letter presents a phase-sensitive joint learning algorithm for single-channel speech enhancement. Although a deep learning framework that estimates the time-frequency (T-F) domain ideal ratio masks demonstrates a strong performance, it is limited in the sense that the enhancement process is performed only in the magnitude domain, while the phase spectra remain unchanged. Thus, recent studies have been conducted to involve phase spectra in speech enhancement systems. A phase-sensitive mask (PSM) is a T-F mask that implicitly represents phase-related information. However, since the PSM has an unbounded value, the networks are trained to target its truncated values rather than directly estimating it. To effectively train the PSM, we first approximate it to have a bounded dynamic range under the assumption that speech and noise are uncorrelated. We then propose a joint learning algorithm that trains the approximated value through its parameterized variables in order to minimize the inevitable error caused by the truncation process. Specifically, we design a network that explicitly targets three parameterized variables: 1) speech magnitude spectra; 2) noise magnitude spectra; and 3) phase difference of clean to noisy spectra. To further improve the performance, we also investigate how the dynamic range of magnitude spectra controlled by a warping function affects the final performance in joint learning algorithms. Finally, we examined how the proposed additional constraint that preserves the sum of the estimated speech and noise power spectra affects the overall system performance. The experimental results show that the proposed learning algorithm outperforms the conventional learning algorithm with the truncated phase-sensitive approximation.
전체 332
332 International Conference Byeong Hyeon Kim, Hyungseob Lim, Jihyun Lee, Inseon Jang, Hong-Goo Kang "Progressive Multi-Stage Neural Audio Codec with Psychoacoustic Loss and Discriminator" in ICASSP, 2023
331 International Conference Hyungseob Lim, Jihyun Lee, Byeong Hyeon Kim, Inseon Jang, Hong-Goo Kang "End-to-End Neural Audio Coding in the MDCT Domain" in ICASSP, 2023
330 International Conference Miseul Kim, Zhenyu Piao, Jihyun Lee, Hong-Goo Kang "Style Modeling for Multi-Speaker Articulation-to-Speech" in ICASSP, 2023
329 International Journal Jinyoung Lee, Hong-Goo Kang "Real-Time Neural Speech Enhancement Based on Temporal Refinement Network and Channel-Wise Gating Methods" in Digital Signal Processing, vol.133, 2023
328 International Journal Taemin Kim, Yejee Shin, Kyowon Kang, Kiho Kim, Gwanho Kim, Yunsu Byeon, Hwayeon Kim, Yuyan Gao, Jeong Ryong Lee, Geonhui Son, Taeseong Kim, Yohan Jun, Jihyun Kim, Jinyoung Lee, Seyun Um, Yoohwan Kwon, Byung Gwan Son, Myeongki Cho, Mingyu Sang, Jongwoon Shin, Kyubeen Kim, Jungmin Suh, Heekyeong Choi, Seokjun Hong, Huanyu Cheng, Hong-Goo Kang, Dosik Hwang & Ki Jun Yu "Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech interfaces" in Nature Communications, vol.13, 2022
327 International Journal Jinyoung Lee, Hong-Goo Kang "Two-Stage Refinement of Magnitude and Complex Spectra for Real-Time Speech Enhancement" in IEEE Signal Processing Letters, vol.29, pp.2188-2192, 2022
326 International Conference Hyeon-Kyeong Shin, Hyewon Han, Doyeon Kim, Soo-Whan Chung, Hong-Goo Kang "Learning Audio-Text Agreement for Open-vocabulary Keyword Spotting" in INTERSPEECH (*Best Student Paper Finalist), 2022
325 International Conference Changhwan Kim, Se-yun Um, Hyungchan Yoon, Hong-goo Kang "FluentTTS: Text-dependent Fine-grained Style Control for Multi-style TTS" in INTERSPEECH, 2022
324 International Conference Miseul Kim, Zhenyu Piao, Seyun Um, Ran Lee, Jaemin Joh, Seungshin Lee, Hong-Goo Kang "Light-Weight Speaker Verification with Global Context Information" in INTERSPEECH, 2022
323 International Journal Kyungguen Byun, Se-yun Um, Hong-Goo Kang "Length-Normalized Representation Learning for Speech Signals" in IEEE Access, vol.10, pp.60362-60372, 2022