Multi-class learning algorithm for deep neural network-based statistical parametric speech synthesis

International Conference
2016-08-01 16:23
Authors : Eunwoo Song, Hong-Goo Kang

Year : 2016

Publisher / Conference : EUSIPCO

This paper proposes a multi-class learning (MCL) algorithm for a deep neural network (DNN)-based statistical parametric speech synthesis (SPSS) system. Although the DNN-based SPSS system improves the modeling accuracy of statistical parameters, its synthesized speech is often muffled because the training process only considers the global characteristics of the entire set of training data, but does not explicitly consider any local variations. We introduce a DNN-based context clustering algorithm that implicitly divides the training data into several classes, and train them via a shared hidden layer-based MCL algorithm. Since the proposed MCL method efficiently models both the universal and class-dependent characteristics of various phonetic information, it not only avoids the model over-fitting problem but also reduces the over-smoothing effect. Objective and subjective test results also verify that the proposed algorithm performs much better than the conventional method.
전체 355
355 International Conference Hyewon Han, Naveen Kumar "A cross-talk robust multichannel VAD model for multiparty agent interactions trained using synthetic re-recordings" in Hands-free Speech Communication and Microphone Arrays (HSCMA, Satellite workshop in ICASSP), 2024
354 International Conference Yanjue Song, Doyeon Kim, Nilesh Madhu, Hong-Goo Kang "On the Disentanglement and Robustness of Self-Supervised Speech Representations" in International Conference on Electronics, Information, and Communication (ICEIC) (*awarded Best Paper), 2024
353 International Conference Yeona Hong, Miseul Kim, Woo-Jin Chung, Hong-Goo Kang "Contextual Learning for Missing Speech Automatic Speech Recognition" in International Conference on Electronics, Information, and Communication (ICEIC), 2024
352 International Conference Juhwan Yoon, Seyun Um, Woo-Jin Chung, Hong-Goo Kang "SC-ERM: Speaker-Centric Learning for Speech Emotion Recognition" in International Conference on Electronics, Information, and Communication (ICEIC), 2024
351 International Conference Hejung Yang, Hong-Goo Kang "On Fine-Tuning Pre-Trained Speech Models With EMA-Target Self-Supervised Loss" in ICASSP, 2024
350 International Journal Zainab Alhakeem, Se-In Jang, Hong-Goo Kang "Disentangled Representations in Local-Global Contexts for Arabic Dialect Identification" in Transactions on Audio, Speech, and Language Processing, 2024
349 International Conference Hong-Goo Kang, W. Bastiaan Kleijn, Jan Skoglund, Michael Chinen "Convolutional Transformer for Neural Speech Coding" in Audio Engineering Society Convention, 2023
348 International Conference Hong-Goo Kang, Jan Skoglund, W. Bastiaan Kleijn, Andrew Storus, Hengchin Yeh "A High-Rate Extension to Soundstream" in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2023
347 International Conference Zhenyu Piao, Hyungseob Lim, Miseul Kim, Hong-goo Kang "PDF-NET: Pitch-adaptive Dynamic Filter Network for Intra-gender Speaker Verification" in APSIPA ASC, 2023
346 International Conference WooSeok Ko, Seyun Um, Zhenyu Piao, Hong-goo Kang "Consideration of Varying Training Lengths for Short-Duration Speaker Verification" in APSIPA ASC, 2023