Papers

Efficient deep neural networks for speech synthesis using bottleneck features

International Conference
2016~2020
작성자
한혜원
작성일
2016-12-01 16:29
조회
1147
Authors : Young-Sun Joo, Won-Suk Jun, Hong-Goo Kang

Year : 2016

Publisher / Conference : APSIPA

This paper proposes a cascading deep neural network (DNN) structure for speech synthesis system that consists of text-to-bottleneck (TTB) and bottleneck-to-speech (BTS) models. Unlike conventional single structure that requires a large database to find complicated mapping rules between linguistic and acoustic features, the proposed structure is very effective even if the available training database is inadequate. The bottle-neck feature utilized in the proposed approach represents the characteristics of linguistic features and its average acoustic features of several speakers. Therefore, it is more efficient to learn a mapping rule between bottleneck and acoustic features than to learn directly a mapping rule between linguistic and acoustic features. Experimental results show that the learning capability of the proposed structure is much higher than that of the conventional structures. Objective and subjective listening test results also verify the superiority of the proposed structure.
전체 344
344 International Conference Zhenyu Piao, Hyungseob Lim, Miseul Kim, Hong-goo Kang "PDF-NET: Pitch-adaptive Dynamic Filter Network for Intra-gender Speaker Verification" in APSIPA ASC, 2023
343 International Conference WooSeok Ko, Seyun Um, Zhenyu Piao, Hong-goo Kang "Consideration of Varying Training Lengths for Short-Duration Speaker Verification" in APSIP ASC, 2023
342 International Journal Hyungchan Yoon, Changhwan Kim, Seyun Um, Hyun-Wook Yoon, Hong-Goo Kang "SC-CNN: Effective Speaker Conditioning Method for Zero-Shot Multi-Speaker Text-to-Speech Systems" in IEEE Signal Processing Letters, vol.30, pp.593-597, 2023
341 International Conference Miseul Kim, Zhenyu Piao, Jihyun Lee, Hong-Goo Kang "BrainTalker: Low-Resource Brain-to-Speech Synthesis with Transfer Learning using Wav2Vec 2.0" in The IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 2023
340 International Conference Seyun Um, Jihyun Kim, Jihyun Lee, Hong-Goo Kang "Facetron: A Multi-speaker Face-to-Speech Model based on Cross-Modal Latent Representations" in EUSIPCO, 2023
339 International Conference Hejung Yang, Hong-Goo Kang "Feature Normalization for Fine-tuning Self-Supervised Models in Speech Enhancement" in INTERSPEECH, 2023
338 International Conference Jihyun Kim, Hong-Goo Kang "Contrastive Learning based Deep Latent Masking for Music Source Seperation" in INTERSPEECH, 2023
337 International Conference Woo-Jin Chung, Doyeon Kim, Soo-Whan Chung, Hong-Goo Kang "MF-PAM: Accurate Pitch Estimation through Periodicity Analysis and Multi-level Feature Fusion" in INTERSPEECH, 2023
336 International Conference Hyungchan Yoon, Seyun Um, Changhwan Kim, Hong-Goo Kang "Adversarial Learning of Intermediate Acoustic Feature for End-to-End Lightweight Text-to-Speech" in INTERSPEECH, 2023
335 International Conference Hyungchan Yoon, Changhwan Kim, Eunwoo Song, Hyun-Wook Yoon, Hong-Goo Kang "Pruning Self-Attention for Zero-Shot Multi-Speaker Text-to-Speech" in INTERSPEECH, 2023