Papers

Gradient-based active learning query strategy for end-to-end speech recognition

International Conference
2016~2020
작성자
한혜원
작성일
2019-05-01 16:40
조회
93
Authors : Yang Yuan, Soo-Whan Chung, Hong-Goo Kang

Year : 2019

Publisher / Conference : ICASSP

In this paper, we propose an effective active learning query strategy for an automatic speech recognition system with the aim of reducing the training cost. Generally, training a deep neural network with supervised learning requires a massive amount of labeled data to obtain excellent performance. However, labeling data is tedious and costly manual work. Active learning can solve this problem by choosing and only annotating informative instances, which presents better results even with less transcribed data. In this approach it is vitally important to accurately select informative samples. Based on the preliminary experiment results that true gradient length has the best performance in terms of measuring sample informativeness in ideal conditions, we propose utilizing both uncertainty and the expected gradient length criterion to approximate the true gradient length using a neural network. The experiment results show that our proposed method is superior to the conventional individual criterion when applied to a phoneme-based speech recognition system, and it has both a faster convergence speed and the greatest loss reduction in both clean and noisy conditions.
전체 319
319 International Conference Jinyoung Lee and Hong-Goo Kang "Stacked U-Net with High-level Feature Transfer for Parameter Efficient Speech Enhancement" in APSIPA ASC, 2021
318 International Conference Huu-Kim Nguyen, Kihyuk Jeong, Se-Yun Um, Min-Jae Hwang, Eunwoo Song, Hong-Goo Kang "LiteTTS: A Decoder-free Light-weight Text-to-wave Synthesis Based on Generative Adversarial Networks" in INTERSPEECH, 2021
317 International Conference Zainab Alhakeem, Yoohwan Kwon, Hong-Goo Kang "Disentangled Representations for Arabic Dialect Identification based on Supervised Clustering with Triplet Loss" in EUSIPCO, 2021
316 International Conference Miseul Kim, Minh-Tri Ho, Hong-Goo Kang "Self-supervised Complex Network for Machine Sound Anomaly Detection" in EUSIPCO, 2021
315 International Conference Kihyuk Jeong, Huu-Kim Nguyen, Hong-Goo Kang "A Fast and Lightweight Text-To-Speech Model with Spectrum and Waveform Alignment Algorithms" in EUSIPCO, 2021
314 International Conference Jiyoung Lee*, Soo-Whan Chung*, Sunok Kim, Hong-Goo Kang**, Kwanghoon Sohn** "Looking into Your Speech: Learning Cross-modal Affinity for Audio-visual Speech Separation" in CVPR, 2021
313 International Conference Zainab Alhakeem, Hong-Goo Kang "Confidence Learning from Noisy Labels for Arabic Dialect Identification" in ITC-CSCC, 2021
312 International Conference Huu-Kim Nguyen, Kihyuk Jeong, Hong-Goo Kang "Fast and Lightweight Speech Synthesis Model based on FastSpeech2" in ITC-CSCC, 2021
311 International Conference Yoohwan Kwon*, Hee-Soo Heo*, Bong-Jin Lee, Joon Son Chung "The ins and outs of speaker recognition: lessons from VoxSRC 2020" in ICASSP, 2021
310 International Conference You Jin Kim, Hee Soo Heo, Soo-Whan Chung, Bong-Jin Lee "End-to-end Lip Synchronisation Based on Pattern Classification" in IEEE Spoken Language Technology Workshop (SLT), 2020