Papers

Alignment-Free Cancelable Fingerprint Templates Based on Local Minutiae Information

International Journal
2006~2010
작성자
이진영
작성일
2007-08-01 13:50
조회
65
Authors : Chulhan Lee, Jeung-Yoon Choi, Kar-Ann Toh, Sangyoun Lee

Year : 2007

Publisher / Conference : IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)

Volume : 37, issue 4

Page : 980-992

To replace compromised biometric templates, cancelable biometrics has recently been introduced. The concept is to transform a biometric signal or feature into a new one for enrollment and matching. For making cancelable fingerprint templates, previous approaches used either the relative position of a minutia to a core point or the absolute position of a minutia in a given fingerprint image. Thus, a query fingerprint is required to be accurately aligned to the enrolled fingerprint in order to obtain identically transformed minutiae. In this paper, we propose a new method for making cancelable fingerprint templates that do not require alignment. For each minutia, a rotation and translation invariant value is computed from the orientation information of neighboring local regions around the minutia. The invariant value is used as the input to two changing functions that output two values for the translational and rotational movements of the original minutia, respectively, in the cancelable template. When a template is compromised, it is replaced by a new one generated by different changing functions. Our approach preserves the original geometric relationships (translation and rotation) between the enrolled and query templates after they are transformed. Therefore, the transformed templates can be used to verify a person without requiring alignment of the input fingerprint images. In our experiments, we evaluated the proposed method in terms of two criteria: performance and changeability. When evaluating the performance, we examined how verification accuracy varied as the transformed templates were used for matching. When evaluating the changeability, we measured the dissimilarities between the original and transformed templates, and between two differently transformed templates, which were obtained from the same original fingerprint. The experimental results show that the two criteria mutually affect each other and can be controlled by varying the control parameters of the changing functions.
전체 319
319 International Conference Jinyoung Lee and Hong-Goo Kang "Stacked U-Net with High-level Feature Transfer for Parameter Efficient Speech Enhancement" in APSIPA ASC, 2021
318 International Conference Huu-Kim Nguyen, Kihyuk Jeong, Se-Yun Um, Min-Jae Hwang, Eunwoo Song, Hong-Goo Kang "LiteTTS: A Decoder-free Light-weight Text-to-wave Synthesis Based on Generative Adversarial Networks" in INTERSPEECH, 2021
317 International Conference Zainab Alhakeem, Yoohwan Kwon, Hong-Goo Kang "Disentangled Representations for Arabic Dialect Identification based on Supervised Clustering with Triplet Loss" in EUSIPCO, 2021
316 International Conference Miseul Kim, Minh-Tri Ho, Hong-Goo Kang "Self-supervised Complex Network for Machine Sound Anomaly Detection" in EUSIPCO, 2021
315 International Conference Kihyuk Jeong, Huu-Kim Nguyen, Hong-Goo Kang "A Fast and Lightweight Text-To-Speech Model with Spectrum and Waveform Alignment Algorithms" in EUSIPCO, 2021
314 International Conference Jiyoung Lee*, Soo-Whan Chung*, Sunok Kim, Hong-Goo Kang**, Kwanghoon Sohn** "Looking into Your Speech: Learning Cross-modal Affinity for Audio-visual Speech Separation" in CVPR, 2021
313 International Conference Zainab Alhakeem, Hong-Goo Kang "Confidence Learning from Noisy Labels for Arabic Dialect Identification" in ITC-CSCC, 2021
312 International Conference Huu-Kim Nguyen, Kihyuk Jeong, Hong-Goo Kang "Fast and Lightweight Speech Synthesis Model based on FastSpeech2" in ITC-CSCC, 2021
311 International Conference Yoohwan Kwon*, Hee-Soo Heo*, Bong-Jin Lee, Joon Son Chung "The ins and outs of speaker recognition: lessons from VoxSRC 2020" in ICASSP, 2021
310 International Conference You Jin Kim, Hee Soo Heo, Soo-Whan Chung, Bong-Jin Lee "End-to-end Lip Synchronisation Based on Pattern Classification" in IEEE Spoken Language Technology Workshop (SLT), 2020