Papers

Prosody dependent speech recognition on radio news corpus of American English

International Journal
2006~2010
작성자
이진영
작성일
2006-01-01 14:00
조회
903
Authors : Ken Chen, Mark Hasegawa-johnson, Aaron Cohen, Sarah Borys, Sung-Suk Kim, Jennifer Cole, Jeung-Yoon Choi

Year : 2006

Publisher / Conference : IEEE Transactions on Audio, Speech, and Language Processing

Volume : 14, issue 1

Page : 232-245

Does prosody help word recognition? This paper proposes a novel probabilistic framework in which word and phoneme are dependent on prosody in a way that reduces word error rates (WER) relative to a prosody-independent recognizer with comparable parameter count. In the proposed prosody-dependent speech recognizer, word and phoneme models are conditioned on two important prosodic variables: the intonational phrase boundary and the pitch accent. An information-theoretic analysis is provided to show that prosody dependent acoustic and language modeling can increase the mutual information between the true word hypothesis and the acoustic observation by exciting the interaction between prosody dependent acoustic model and prosody dependent language model. Empirically, results indicate that the influence of these prosodic variables on allophonic models are mainly restricted to a small subset of distributions: the duration PDFs (modeled using an explicit duration hidden Markov model or EDHMM) and the acoustic-prosodic observation PDFs (normalized pitch frequency). Influence of prosody on cepstral features is limited to a subset of phonemes: for example, vowels may be influenced by both accent and phrase position, but phrase-initial and phrase-final consonants are independent of accent. Leveraging these results, effective prosody dependent allophonic models are built with minimal increase in parameter count. These prosody dependent speech recognizers are able to reduce word error rates by up to 11% relative to prosody independent recognizers with comparable parameter count, in experiments based on the prosodically-transcribed Boston Radio News corpus.
전체 344
344 International Conference Zhenyu Piao, Hyungseob Lim, Miseul Kim, Hong-goo Kang "PDF-NET: Pitch-adaptive Dynamic Filter Network for Intra-gender Speaker Verification" in APSIPA ASC, 2023
343 International Conference WooSeok Ko, Seyun Um, Zhenyu Piao, Hong-goo Kang "Consideration of Varying Training Lengths for Short-Duration Speaker Verification" in APSIP ASC, 2023
342 International Journal Hyungchan Yoon, Changhwan Kim, Seyun Um, Hyun-Wook Yoon, Hong-Goo Kang "SC-CNN: Effective Speaker Conditioning Method for Zero-Shot Multi-Speaker Text-to-Speech Systems" in IEEE Signal Processing Letters, vol.30, pp.593-597, 2023
341 International Conference Miseul Kim, Zhenyu Piao, Jihyun Lee, Hong-Goo Kang "BrainTalker: Low-Resource Brain-to-Speech Synthesis with Transfer Learning using Wav2Vec 2.0" in The IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 2023
340 International Conference Seyun Um, Jihyun Kim, Jihyun Lee, Hong-Goo Kang "Facetron: A Multi-speaker Face-to-Speech Model based on Cross-Modal Latent Representations" in EUSIPCO, 2023
339 International Conference Hejung Yang, Hong-Goo Kang "Feature Normalization for Fine-tuning Self-Supervised Models in Speech Enhancement" in INTERSPEECH, 2023
338 International Conference Jihyun Kim, Hong-Goo Kang "Contrastive Learning based Deep Latent Masking for Music Source Seperation" in INTERSPEECH, 2023
337 International Conference Woo-Jin Chung, Doyeon Kim, Soo-Whan Chung, Hong-Goo Kang "MF-PAM: Accurate Pitch Estimation through Periodicity Analysis and Multi-level Feature Fusion" in INTERSPEECH, 2023
336 International Conference Hyungchan Yoon, Seyun Um, Changhwan Kim, Hong-Goo Kang "Adversarial Learning of Intermediate Acoustic Feature for End-to-End Lightweight Text-to-Speech" in INTERSPEECH, 2023
335 International Conference Hyungchan Yoon, Changhwan Kim, Eunwoo Song, Hyun-Wook Yoon, Hong-Goo Kang "Pruning Self-Attention for Zero-Shot Multi-Speaker Text-to-Speech" in INTERSPEECH, 2023