Papers

Prosody dependent speech recognition on radio news corpus of American English

International Journal
2006~2010
작성자
이진영
작성일
2006-01-01 14:00
조회
203
Authors : Ken Chen, Mark Hasegawa-johnson, Aaron Cohen, Sarah Borys, Sung-Suk Kim, Jennifer Cole, Jeung-Yoon Choi

Year : 2006

Publisher / Conference : IEEE Transactions on Audio, Speech, and Language Processing

Volume : 14, issue 1

Page : 232-245

Does prosody help word recognition? This paper proposes a novel probabilistic framework in which word and phoneme are dependent on prosody in a way that reduces word error rates (WER) relative to a prosody-independent recognizer with comparable parameter count. In the proposed prosody-dependent speech recognizer, word and phoneme models are conditioned on two important prosodic variables: the intonational phrase boundary and the pitch accent. An information-theoretic analysis is provided to show that prosody dependent acoustic and language modeling can increase the mutual information between the true word hypothesis and the acoustic observation by exciting the interaction between prosody dependent acoustic model and prosody dependent language model. Empirically, results indicate that the influence of these prosodic variables on allophonic models are mainly restricted to a small subset of distributions: the duration PDFs (modeled using an explicit duration hidden Markov model or EDHMM) and the acoustic-prosodic observation PDFs (normalized pitch frequency). Influence of prosody on cepstral features is limited to a subset of phonemes: for example, vowels may be influenced by both accent and phrase position, but phrase-initial and phrase-final consonants are independent of accent. Leveraging these results, effective prosody dependent allophonic models are built with minimal increase in parameter count. These prosody dependent speech recognizers are able to reduce word error rates by up to 11% relative to prosody independent recognizers with comparable parameter count, in experiments based on the prosodically-transcribed Boston Radio News corpus.
전체 326
326 International Conference Hyeon-Kyeong Shin, Hyewon Han, Doyeon Kim, Soo-Whan Chung, Hong-Goo Kang "Learning Audio-Text Agreement for Open-vocabulary Keyword Spotting" in INTERSPEECH, 2022
325 International Conference Changhwan Kim, Se-yun Um, Hyungchan Yoon, Hong-goo Kang "FluentTTS: Text-dependent Fine-grained Style Control for Multi-style TTS" in INTERSPEECH, 2022
324 International Conference Miseul Kim, Zhenyu Piao, Seyun Um, Ran Lee, Jaemin Joh, Seungshin Lee, Hong-Goo Kang "Light-Weight Speaker Verification with Global Context Information" in INTERSPEECH, 2022
323 International Journal Kyungguen Byun, Se-yun Um, Hong-Goo Kang "Length-Normalized Representation Learning for Speech Signals" in IEEE Access, vol.10, pp.60362-60372, 2022
322 International Conference Doyeon Kim, Hyewon Han, Hyeon-Kyeong Shin, Soo-Whan Chung, Hong-Goo Kang "Phase Continuity: Learning Derivatives of Phase Spectrum for Speech Enhancement" in ICASSP, 2022
321 International Conference Chanwoo Lee, Hyungseob Lim, Jihyun Lee, Inseon Jang, Hong-Goo Kang "Progressive Multi-Stage Neural Audio Coding with Guided References" in ICASSP, 2022
320 International Conference Jihyun Lee, Hyungseob Lim, Chanwoo Lee, Inseon Jang, Hong-Goo Kang "Adversarial Audio Synthesis Using a Harmonic-Percussive Discriminator" in ICASSP, 2022
319 International Conference Jinyoung Lee and Hong-Goo Kang "Stacked U-Net with High-level Feature Transfer for Parameter Efficient Speech Enhancement" in APSIPA ASC, 2021
318 International Conference Huu-Kim Nguyen, Kihyuk Jeong, Se-Yun Um, Min-Jae Hwang, Eunwoo Song, Hong-Goo Kang "LiteTTS: A Decoder-free Light-weight Text-to-wave Synthesis Based on Generative Adversarial Networks" in INTERSPEECH, 2021
317 International Conference Zainab Alhakeem, Yoohwan Kwon, Hong-Goo Kang "Disentangled Representations for Arabic Dialect Identification based on Supervised Clustering with Triplet Loss" in EUSIPCO, 2021