Papers

Estimating Redundancy Information of Selected Features in Multi-dimensional Pattern Classification

International Journal
2011~2015
작성자
이진영
작성일
2011-03-01 14:35
조회
781
Authors : Chi-Sang Jung, Hyunson Seo, Hong-Goo Kang

Year : 2011

Publisher / Conference : Pattern Recognition Letters

Volume : 32, issue 4

Page : 590-596

This paper proposes a novel criterion for estimating the redundancy information of selected feature sets in multi-dimensional pattern classification. An appropriate feature selection process typically maximizes the relevancy of features to each class and minimizes the redundancy of features between selected features. Unlike to the relevancy information that can be measured by mutual information, however, it is difficult to estimate the redundancy information because its dynamic range is varied by the characteristics of features and classes.

By utilizing the conceptual diagram of the relationship between candidate features, selected features, and class variables, this paper proposes a new criterion to accurately compute the amount of redundancy. Specifically, the redundancy term is estimated by conditional mutual information between selected and candidate features to each class variable, which does not need a cumbersome normalization process as the conventional algorithm does. The proposed algorithm is implemented into a speech/music discrimination system to evaluate classification performance. Experimental results by varying the number of selected features verify that the proposed method shows higher classification accuracy than conventional algorithms.
전체 344
344 International Journal Zhenyu Piao, Hyungseob Lim, Miseul Kim, Hong-goo Kang "PDF-NET: Pitch-adaptive Dynamic Filter Network for Intra-gender Speaker Verification" in APSIPA ASC, 2023
343 International Conference WooSeok Ko, Seyun Um, Zhenyu Piao, Hong-goo Kang "Consideration of Varying Training Lengths for Short-Duration Speaker Verification" in APSIP ASC, 2023
342 International Journal Hyungchan Yoon, Changhwan Kim, Seyun Um, Hyun-Wook Yoon, Hong-Goo Kang "SC-CNN: Effective Speaker Conditioning Method for Zero-Shot Multi-Speaker Text-to-Speech Systems" in IEEE Signal Processing Letters, vol.30, pp.593-597, 2023
341 International Conference Miseul Kim, Zhenyu Piao, Jihyun Lee, Hong-Goo Kang "BrainTalker: Low-Resource Brain-to-Speech Synthesis with Transfer Learning using Wav2Vec 2.0" in The IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 2023
340 International Conference Seyun Um, Jihyun Kim, Jihyun Lee, Hong-Goo Kang "Facetron: A Multi-speaker Face-to-Speech Model based on Cross-Modal Latent Representations" in EUSIPCO, 2023
339 International Conference Hejung Yang, Hong-Goo Kang "Feature Normalization for Fine-tuning Self-Supervised Models in Speech Enhancement" in INTERSPEECH, 2023
338 International Conference Jihyun Kim, Hong-Goo Kang "Contrastive Learning based Deep Latent Masking for Music Source Seperation" in INTERSPEECH, 2023
337 International Conference Woo-Jin Chung, Doyeon Kim, Soo-Whan Chung, Hong-Goo Kang "MF-PAM: Accurate Pitch Estimation through Periodicity Analysis and Multi-level Feature Fusion" in INTERSPEECH, 2023
336 International Conference Hyungchan Yoon, Seyun Um, Changhwan Kim, Hong-Goo Kang "Adversarial Learning of Intermediate Acoustic Feature for End-to-End Lightweight Text-to-Speech" in INTERSPEECH, 2023
335 International Conference Hyungchan Yoon, Changhwan Kim, Eunwoo Song, Hyun-Wook Yoon, Hong-Goo Kang "Pruning Self-Attention for Zero-Shot Multi-Speaker Text-to-Speech" in INTERSPEECH, 2023