Papers

Two-stage source tracking method using a multiple linear regression model in the expanded phase domain

International Journal
2011~2015
작성자
이진영
작성일
2012-01-01 14:58
조회
1259
Authors : Jae-Mo Yang, Hong-Goo Kang

Year : 2012

Publisher / Conference : EURASIP Journal on Advances in Signal Processing

Volume : 5

This article proposes an efficient two-channel time delay estimation method for tracking a moving speaker in noisy and re-verberant environment. Unlike conventional linear regression model-based methods, the proposed multiple linear regression model designed in the expanded phase domain shows high estimation accuracy in adverse condition because its the Gaussian assumption on phase distribution is valid. Therefore, the least-square-based time delay estimator using the proposed multiple linear regression model becomes an ideal estimator that does not require a complicated phase unwrapping process. In addition, the proposed method is extended to the two-stage recursive estimation approach, which can be used for a moving source tracking scenario. The performance of the proposed method is compared with that of conventional cross-correlation and linear regression-based methods in noisy and reverberant environment. Experimental results verify that the proposed algorithm significantly decreases estimation anomalies and improves the accuracy of time delay estimation. Finally, the tracking performance of the proposed method to both slow and fast moving speakers is confirmed in adverse environment.
전체 356
356 International Conference Yanjue Song, Doyeon Kim, Hong-Goo Kang, Nilesh Madhu "Spectrum-aware neural vocoder based on self-supervised learning for speech enhancement" in EUSIPCO, 2024
355 International Conference Hyewon Han, Naveen Kumar "A cross-talk robust multichannel VAD model for multiparty agent interactions trained using synthetic re-recordings" in Hands-free Speech Communication and Microphone Arrays (HSCMA, Satellite workshop in ICASSP), 2024
354 International Conference Yanjue Song, Doyeon Kim, Nilesh Madhu, Hong-Goo Kang "On the Disentanglement and Robustness of Self-Supervised Speech Representations" in International Conference on Electronics, Information, and Communication (ICEIC) (*awarded Best Paper), 2024
353 International Conference Yeona Hong, Miseul Kim, Woo-Jin Chung, Hong-Goo Kang "Contextual Learning for Missing Speech Automatic Speech Recognition" in International Conference on Electronics, Information, and Communication (ICEIC), 2024
352 International Conference Juhwan Yoon, Seyun Um, Woo-Jin Chung, Hong-Goo Kang "SC-ERM: Speaker-Centric Learning for Speech Emotion Recognition" in International Conference on Electronics, Information, and Communication (ICEIC), 2024
351 International Conference Hejung Yang, Hong-Goo Kang "On Fine-Tuning Pre-Trained Speech Models With EMA-Target Self-Supervised Loss" in ICASSP, 2024
350 International Journal Zainab Alhakeem, Se-In Jang, Hong-Goo Kang "Disentangled Representations in Local-Global Contexts for Arabic Dialect Identification" in Transactions on Audio, Speech, and Language Processing, 2024
349 International Conference Hong-Goo Kang, W. Bastiaan Kleijn, Jan Skoglund, Michael Chinen "Convolutional Transformer for Neural Speech Coding" in Audio Engineering Society Convention, 2023
348 International Conference Hong-Goo Kang, Jan Skoglund, W. Bastiaan Kleijn, Andrew Storus, Hengchin Yeh "A High-Rate Extension to Soundstream" in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2023
347 International Conference Zhenyu Piao, Hyungseob Lim, Miseul Kim, Hong-goo Kang "PDF-NET: Pitch-adaptive Dynamic Filter Network for Intra-gender Speaker Verification" in APSIPA ASC, 2023