Papers

FluentTTS: Text-dependent Fine-grained Style Control for Multi-style TTS

International Conference
작성자
dsp
작성일
2022-06-16 17:07
조회
1992
Authors : Changhwan Kim, Seyun Um, Hyungchan Yoon, Hong-goo Kang

Year : 2022

Publisher / Conference : INTERSPEECH

Research area : Speech Signal Processing, Text-to-Speech, Speech Synthesis


Presentation : Poster

In this paper, we propose a method to flexibly control the local prosodic variation of a neural text-to-speech (TTS) model. To provide expressiveness for synthesized speech, conventional TTS models utilize utterance-wise global style embeddings that are obtained by compressing frame-level embeddings along the time axis. However, since utterance-wise global features do not contain sufficient information to represent the characteristics of word-level local features, they are not appropriate for direct use on controlling prosody at a fine scale. In multi-style TTS models, it is very important to have the capability to control local prosody because it plays a key role in finding the most appropriate text-to-speech pair among many one-to-many mapping candidates.
To explicitly present local prosodic characteristics to the contextual information of the corresponding input text, we propose a module to predict the fundamental frequency (F0) of each text by conditioning on the utterance-wise global style embedding. We also estimate multi-style embeddings using a multi-style encoder, which takes as inputs both a global utterance-wise embedding and a local F0 embedding. Our multi-style embedding enhances the naturalness and expressiveness of synthesized speech and is able to control prosody styles at the word-level or phoneme -level.
전체 365
139 International Conference Woo-Jin Chung, Doyeon Kim, Soo-Whan Chung, Hong-Goo Kang "MF-PAM: Accurate Pitch Estimation through Periodicity Analysis and Multi-level Feature Fusion" in INTERSPEECH, 2023
138 International Conference Hyungchan Yoon, Seyun Um, Changhwan Kim, Hong-Goo Kang "Adversarial Learning of Intermediate Acoustic Feature for End-to-End Lightweight Text-to-Speech" in INTERSPEECH, 2023
137 International Conference Hyungchan Yoon, Changhwan Kim, Eunwoo Song, Hyun-Wook Yoon, Hong-Goo Kang "Pruning Self-Attention for Zero-Shot Multi-Speaker Text-to-Speech" in INTERSPEECH, 2023
136 International Conference Doyeon Kim, Soo-Whan Chung, Hyewon Han, Youna Ji, Hong-Goo Kang "HD-DEMUCS: General Speech Restoration with Heterogeneous Decoders" in INTERSPEECH, 2023
135 International Conference Zhenyu Piao, Miseul Kim, Hyungchan Yoon, Hong-Goo Kang "HappyQuokka System for ICASSP 2023 Auditory EEG Challenge" in ICASSP, 2023
134 International Conference Byeong Hyeon Kim, Hyungseob Lim, Jihyun Lee, Inseon Jang, Hong-Goo Kang "Progressive Multi-Stage Neural Audio Codec with Psychoacoustic Loss and Discriminator" in ICASSP, 2023
133 International Conference Hyungseob Lim, Jihyun Lee, Byeong Hyeon Kim, Inseon Jang, Hong-Goo Kang "End-to-End Neural Audio Coding in the MDCT Domain" in ICASSP, 2023
132 International Conference Miseul Kim, Zhenyu Piao, Jihyun Lee, Hong-Goo Kang "Style Modeling for Multi-Speaker Articulation-to-Speech" in ICASSP, 2023
131 International Conference Hyeon-Kyeong Shin, Hyewon Han, Doyeon Kim, Soo-Whan Chung, Hong-Goo Kang "Learning Audio-Text Agreement for Open-vocabulary Keyword Spotting" in INTERSPEECH (*Best Student Paper Finalist), 2022
130 International Conference Changhwan Kim, Seyun Um, Hyungchan Yoon, Hong-goo Kang "FluentTTS: Text-dependent Fine-grained Style Control for Multi-style TTS" in INTERSPEECH, 2022