Papers

Stacked U-Net with High-level Feature Transfer for Parameter Efficient Speech Enhancement

International Conference
2021~
작성자
김화연
작성일
2021-09-01 14:48
조회
2472
Authors : Jinyoung Lee and Hong-Goo Kang

Year : 2021

Publisher / Conference : APSIPA ASC

Research area : Speech Signal Processing, Speech Enhancement

In this paper, we present a stacked U-Net structure-based speech enhancement algorithm with parameter reduction and real-time processing. To significantly reduce the number of network parameters, we propose a stacked structure in which several shallow U-Nets with fewer convolutional layer channels are cascaded. However, simply stacking the small-scale U-Nets cannot sufficiently compensate for the performance loss caused by the lack of parameters. To overcome this problem, we propose a high-level feature transfer method that passes all the multi-channel output features, which are obtained before passing through the intermediate output layer, to the next stage.Furthermore, our proposed model can process analysis frames with short lengths because its down-sampling and up-sampling blocks are much smaller than the conventional Wave U-Net method; theses smaller layers make our proposed model suitable for low-delay online processing. Experiments show that our proposed method outperforms the conventional Wave U-Net method on almost all objective measures and requires only 7.21%of the network parameters when compared to the conventional method. In addition, our model can be successfully implemented in real time on both GPU and CPU environments.
전체 364
334 International Conference Zhenyu Piao, Miseul Kim, Hyungchan Yoon, Hong-Goo Kang "HappyQuokka System for ICASSP 2023 Auditory EEG Challenge" in ICASSP, 2023
333 International Conference Byeong Hyeon Kim, Hyungseob Lim, Jihyun Lee, Inseon Jang, Hong-Goo Kang "Progressive Multi-Stage Neural Audio Codec with Psychoacoustic Loss and Discriminator" in ICASSP, 2023
332 International Conference Hyungseob Lim, Jihyun Lee, Byeong Hyeon Kim, Inseon Jang, Hong-Goo Kang "End-to-End Neural Audio Coding in the MDCT Domain" in ICASSP, 2023
331 International Conference Miseul Kim, Zhenyu Piao, Jihyun Lee, Hong-Goo Kang "Style Modeling for Multi-Speaker Articulation-to-Speech" in ICASSP, 2023
330 International Journal Jinyoung Lee, Hong-Goo Kang "Real-Time Neural Speech Enhancement Based on Temporal Refinement Network and Channel-Wise Gating Methods" in Digital Signal Processing, vol.133, 2023
329 International Journal Taemin Kim, Yejee Shin, Kyowon Kang, Kiho Kim, Gwanho Kim, Yunsu Byeon, Hwayeon Kim, Yuyan Gao, Jeong Ryong Lee, Geonhui Son, Taeseong Kim, Yohan Jun, Jihyun Kim, Jinyoung Lee, Seyun Um, Yoohwan Kwon, Byung Gwan Son, Myeongki Cho, Mingyu Sang, Jongwoon Shin, Kyubeen Kim, Jungmin Suh, Heekyeong Choi, Seokjun Hong, Huanyu Cheng, Hong-Goo Kang, Dosik Hwang & Ki Jun Yu "Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech interfaces" in Nature Communications, vol.13, 2022
328 International Journal Jinyoung Lee, Hong-Goo Kang "Two-Stage Refinement of Magnitude and Complex Spectra for Real-Time Speech Enhancement" in IEEE Signal Processing Letters, vol.29, pp.2188-2192, 2022
327 Domestic Conference Hyungseob Lim, Hong-Goo Kang, Inseon Jang "엔트로피 모델을 활용한 심층 신경망 기반 오디오 압축 모델 최적화" in 한국방송·미디어공학회 2022년 하계학술대회, 2022
326 International Conference Hyeon-Kyeong Shin, Hyewon Han, Doyeon Kim, Soo-Whan Chung, Hong-Goo Kang "Learning Audio-Text Agreement for Open-vocabulary Keyword Spotting" in INTERSPEECH (*Best Student Paper Finalist), 2022
325 International Conference Changhwan Kim, Seyun Um, Hyungchan Yoon, Hong-goo Kang "FluentTTS: Text-dependent Fine-grained Style Control for Multi-style TTS" in INTERSPEECH, 2022