Papers

A Deep Learning-based Stress Detection Algorithm with Speech Signal

International Conference
2016~2020
작성자
한혜원
작성일
2018-10-01 16:38
조회
1437
Authors : Hyewon Han, Kyungguen Byun, Hong-Goo Kang

Year : 2018

Publisher / Conference : Workshop on Audio-Visual Scene Understanding for Immersive Multimedia (AVSU’18)

In this paper, we propose a deep learning-based psychological stress detection algorithm using speech signals. With increasing demands for communication between human and intelligent systems, automatic stress detection is becoming an interesting research topic. Stress can be reliably detected by measuring the level of specific hormones (e.g., cortisol), but this is not a convenient method for the detection of stress in human-machine interactions. The proposed algorithm first extracts mel-filterbank coefficients using pre-processed speech data and then predicts the status of stress output using a binary decision criterion (i.e., stressed or unstressed) using long short-term memory (LSTM) and feed-forward networks. To evaluate the performance of the proposed algorithm, speech, video, and bio-signal data were collected in a well-controlled environment. We utilized only speech signals in the decision process from subjects whose salivary cortisol level varies over 10%. Using the proposed algorithm, we achieved 66.4% accuracy in detecting the stress state from 25 subjects, thereby demonstrating the possibility of utilizing speech signals for automatic stress detection.
전체 356
103 International Conference Hyeonjoo Kang, Young-Sun Joo, Inseon Jang, Chunghyun Ahn, Hong-Goo Kang "A Study on Acoustic Parameter Selection Strategies to Improve Deep Learning-Based Speech Synthesis" in APSIPA, 2019
102 International Conference Min-Jae Hwang, Hong-Goo Kang "Parameter enhancement for MELP speech codec in noisy communication environment" in INTERSPEECH, 2019
101 International Conference Keulbit Kim, Jinkyu Lee, Jan Skoglund, Hong-Goo Kang "Model Order Selection for Wind Noise Reduction in Non-negative Matrix Factorization" in ITC-CSCC, 2019
100 International Conference Ohsung Kwon, Inseon Jang, ChungHyun Ahn, Hong-Goo Kang "Emotional Speech Synthesis Based on Style Embedded Tacotron2 Framework" in ITC-CSCC, 2019
99 International Conference Kyungguen Byun, Eunwoo Song, Jinseob Kim, Jae-Min Kim, Hong-Goo Kang "Excitation-by-SampleRNN Model for Text-to-Speech" in ITC-CSCC, 2019
98 International Conference Yang Yuan, Soo-Whan Chung, Hong-Goo Kang "Gradient-based active learning query strategy for end-to-end speech recognition" in ICASSP, 2019
97 International Conference Soo-Whan Chung, Joon Son Chung, Hong-Goo Kang "Perfect match: Improved cross-modal embeddings for audio-visual synchronisation" in ICASSP, 2019
96 International Conference Hyewon Han, Kyungguen Byun, Hong-Goo Kang "A Deep Learning-based Stress Detection Algorithm with Speech Signal" in Workshop on Audio-Visual Scene Understanding for Immersive Multimedia (AVSU’18), 2018
95 International Conference Min-Jae Hwang, Eunwoo Song, Jin-Seob Kim, Hong-Goo Kang "A Unified Framework for the Generation of Glottal Signals in Deep Learning-based Parametric Speech Synthesis Systems" in INTERSPEECH, 2018
94 International Conference Haemin Yang, Soyeon Choe, Keulbit Kim, Hong-Goo Kang "Deep learning-based speech presence probability estimation for noise PSD estimation in single-channel speech enhancement" in ICSigSys, 2018