Papers

A Joint Learning Algorithm for Complex-Valued T-F Masks in Deep Learning-Based Single-Channel Speech Enhancement Systems

International Journal
2016~2020
작성자
이진영
작성일
2019-06-01 22:12
조회
3172
Authors : Jinkyu Lee, Hong-Goo Kang

Year : 2019

Publisher / Conference : IEEE/ACM Transactions on Audio, Speech, and Language Processing

Volume : 27, issue 6

Page : 1098-1108

This paper presents a joint learning algorithm for complex-valued time-frequency (T-F) masks in single-channel speech enhancement systems. Most speech enhancement algorithms operating in a single-channel microphone environment aim to enhance the magnitude component in a T-F domain, while the input noisy phase component is used directly without any processing. Consequently, the mismatch between the processed magnitude and the unprocessed phase degrades the sound quality. To address this issue, a learning method of targeting a T-F mask that is defined in a complex domain has recently been proposed. However, due to a wide dynamic range and an irregular spectrogram pattern of the complex-valued T-F mask, the learning process is difficult even with a large-scale deep learning network. Moreover, the learning process targeting the T-F mask itself does not directly minimize the distortion in spectra or time domains. In order to address these concerns, we focus on three issues: 1) an effective estimation of complex numbers with a wide dynamic range; 2) a learning method that is directly related to speech enhancement performance; and 3) a way to resolve the mismatch between the estimated magnitude and phase spectra. In this study, we propose objective functions that can solve each of these issues and train the network by minimizing them with a joint learning framework. The evaluation results demonstrate that the proposed learning algorithm achieves significant performance improvement in various objective measures and subjective preference listening test.
전체 370
370 International Conference Yeona Hong, Hyewon Han, Woo-jin Chung, Hong-Goo Kang "StableQuant: Layer Adaptive Post-Training Quantization for Speech Foundation Models" in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2025
369 International Conference Sangmin Lee, Woojin Chung, Hong-Goo Kang "LAMA-UT: Language Agnostic Multilingual ASR through Orthography Unification and Language-Specific Transliteration" in Association for the Advancement of Artificial Intelligence (AAAI), 2025
368 International Journal Hyewon Han, Xiulian Peng, Doyeon Kim, Yan Lu, Hong-Goo Kang "Dual-Branch Guidance Encoder for Robust Acoustic Echo Suppression" in IEEE Transactions on Audio, Speech and Language Processing (TASLP), 2024
367 International Journal Hyungseob Lim, Jihyun Lee, Byeong Hyeon Kim, Inseon Jang, Hong-Goo Kang "Perceptual Neural Audio Coding with Modified Discrete Cosine Transform" in IEEE Journal of Special Topics in Signal Processing (JSTSP), 2025
366 International Conference Juhwan Yoon, Hyungseob Lim, Hyeonjin Cha, Hong-Goo Kang "StylebookTTS: Zero-Shot Text-to-Speech Leveraging Unsupervised Style Representation" in APSIPA ASC, 2024
365 International Conference Doyeon Kim, Yanjue Song, Nilesh Madhu, Hong-Goo Kang "Enhancing Neural Speech Embeddings for Generative Speech Models" in APSIPA ASC, 2024
364 Domestic Conference 최웅집, 김병현, 강홍구 "자기 지도 학습 특징을 활용한 음성 신호의 논 블라인드 대역폭 확장" in 대한전자공학회 2024년도 하계종합학술대회, 2024
363 Domestic Conference 홍연아, 정우진, 강홍구 "효율적인 양자화 기법을 통한 DNN 기반 화자 인식 모델 최적화" in 대한전자공학회 2024년도 하계종합학술대회, 2024
362 Domestic Conference 김병현, 강홍구, 장인선 "저지연 조건하의 심층신경망 기반 음성 압축" in 한국방송·미디어공학회 2024년 하계학술대회, 2024
361 International Conference Miseul Kim, Soo-Whan Chung, Youna Ji, Hong-Goo Kang, Min-Seok Choi "Speak in the Scene: Diffusion-based Acoustic Scene Transfer toward Immersive Speech Generation" in INTERSPEECH, 2024