Papers

Length-Normalized Representation Learning for Speech Signals

International Journal
2021~
작성자
dsp
작성일
2022-06-08 16:07
조회
5055
Authors : Kyungguen Byun, Seyun Um, Hong-Goo Kang

Year : 2022

Publisher / Conference : IEEE Access

Volume : 10

Page : 60362-60372

Research area : Speech Signal Processing, Text-to-Speech, Speech Recognition

Presentation/Publication date : 2022.06.08

Presentation : None

In this study, we proposed a length-normalized representation learning method for speech and text to address the inherent problem of sequence-to-sequence models when the input and output sequences exhibit different lengths. To this end, the representations were constrained to a fixed-length shape by including length normalization and de-normalization processes in the pre- and post-network architecture of the transformer-based self-supervised learning framework. Consequently, this enabled the direct modelling of the relationships between sequences with different length without attention or recurrent network between representation domains. This method not only achieved the aforementioned regularized length effect but also achieved a data augmentation effect that effectively handled differently time-scaled input features. The performance of the proposed length-normalized representations on downstream tasks for speaker and phoneme recognition was investigated to verify the effectiveness of this method over conventional representation methods. In addition, to demonstrate the applicability of the proposed representation method to sequence-to-sequence modeling, a unified speech recognition and text-to-speech (TTS) system was developed. The unified system achieved a high accuracy on a frame-wise phoneme prediction and exhibited a promising potential for the generation of high-quality synthesized speech signals on the TTS.
전체 375
375 International Conference Sangmin Lee, Woojin Chung, Seyun Um, and Hong-Goo Kang "UniCoM: A Universal Code-Switching Speech Generator" in EMNLP Findings, 2025
374 International Conference Woongjib Choi, Byeong Hyeon Kim, Hyungseob Lim, Inseon Jang, Hong-Goo Kang "Neural Spectral Band Generation for Audio Coding" in INTERSPEECH, 2025
373 International Conference Jihyun Kim, Doyeon Kim, Hyewon Han, Jinyoung Lee, Jonguk Yoo, Chang Woo Han, Jeongook Song, Hoon-Young Cho, Hong-Goo Kang "Quadruple Path Modeling with Latent Feature Transfer for Permutation-free Continuous Speech Separation" in INTERSPEECH, 2025
372 International Conference Byeong Hyeon Kim,Hyungseob Lim,Inseon Jang,Hong-Goo Kang "Towards an Ultra-Low-Delay Neural Audio Coding with Computational Efficiency" in INTERSPEECH, 2025
371 International Conference Stijn Kindt,Jihyun Kim,Hong-Goo Kang,Nilesh Madhu "Efficient, Cluster-Informed, Deep Speech Separation with Cross-Cluster Information in AD-HOC Wireless Acoustic Sensor Networks" in International Workshop on Acoustic Signal Enhancement (IWAENC), 2024
370 International Conference Yeona Hong, Hyewon Han, Woo-jin Chung, Hong-Goo Kang "StableQuant: Layer Adaptive Post-Training Quantization for Speech Foundation Models" in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2025
369 International Conference Sangmin Lee, Woojin Chung, Hong-Goo Kang "LAMA-UT: Language Agnostic Multilingual ASR through Orthography Unification and Language-Specific Transliteration" in Association for the Advancement of Artificial Intelligence (AAAI), 2025
368 International Journal Hyewon Han, Xiulian Peng, Doyeon Kim, Yan Lu, Hong-Goo Kang "Dual-Branch Guidance Encoder for Robust Acoustic Echo Suppression" in IEEE Transactions on Audio, Speech and Language Processing (TASLP), vol.33, pp.627 - 639, 2025
367 International Journal Hyungseob Lim, Jihyun Lee, Byeong Hyeon Kim, Inseon Jang, Hong-Goo Kang "Perceptual Neural Audio Coding with Modified Discrete Cosine Transform" in IEEE Journal of Special Topics in Signal Processing (JSTSP), 2024
366 International Conference Juhwan Yoon, Hyungseob Lim, Hyeonjin Cha, Hong-Goo Kang "StylebookTTS: Zero-Shot Text-to-Speech Leveraging Unsupervised Style Representation" in APSIPA ASC, 2024