Papers

Estimating Redundancy Information of Selected Features in Multi-dimensional Pattern Classification

International Journal
2011~2015
작성자
이진영
작성일
2011-03-01 14:35
조회
3847
Authors : Chi-Sang Jung, Hyunson Seo, Hong-Goo Kang

Year : 2011

Publisher / Conference : Pattern Recognition Letters

Volume : 32, issue 4

Page : 590-596

This paper proposes a novel criterion for estimating the redundancy information of selected feature sets in multi-dimensional pattern classification. An appropriate feature selection process typically maximizes the relevancy of features to each class and minimizes the redundancy of features between selected features. Unlike to the relevancy information that can be measured by mutual information, however, it is difficult to estimate the redundancy information because its dynamic range is varied by the characteristics of features and classes.

By utilizing the conceptual diagram of the relationship between candidate features, selected features, and class variables, this paper proposes a new criterion to accurately compute the amount of redundancy. Specifically, the redundancy term is estimated by conditional mutual information between selected and candidate features to each class variable, which does not need a cumbersome normalization process as the conventional algorithm does. The proposed algorithm is implemented into a speech/music discrimination system to evaluate classification performance. Experimental results by varying the number of selected features verify that the proposed method shows higher classification accuracy than conventional algorithms.
전체 375
375 International Conference Sangmin Lee, Woojin Chung, Seyun Um, and Hong-Goo Kang "UniCoM: A Universal Code-Switching Speech Generator" in EMNLP Findings, 2025
374 International Conference Woongjib Choi, Byeong Hyeon Kim, Hyungseob Lim, Inseon Jang, Hong-Goo Kang "Neural Spectral Band Generation for Audio Coding" in INTERSPEECH, 2025
373 International Conference Jihyun Kim, Doyeon Kim, Hyewon Han, Jinyoung Lee, Jonguk Yoo, Chang Woo Han, Jeongook Song, Hoon-Young Cho, Hong-Goo Kang "Quadruple Path Modeling with Latent Feature Transfer for Permutation-free Continuous Speech Separation" in INTERSPEECH, 2025
372 International Conference Byeong Hyeon Kim,Hyungseob Lim,Inseon Jang,Hong-Goo Kang "Towards an Ultra-Low-Delay Neural Audio Coding with Computational Efficiency" in INTERSPEECH, 2025
371 International Conference Stijn Kindt,Jihyun Kim,Hong-Goo Kang,Nilesh Madhu "Efficient, Cluster-Informed, Deep Speech Separation with Cross-Cluster Information in AD-HOC Wireless Acoustic Sensor Networks" in International Workshop on Acoustic Signal Enhancement (IWAENC), 2024
370 International Conference Yeona Hong, Hyewon Han, Woo-jin Chung, Hong-Goo Kang "StableQuant: Layer Adaptive Post-Training Quantization for Speech Foundation Models" in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2025
369 International Conference Sangmin Lee, Woojin Chung, Hong-Goo Kang "LAMA-UT: Language Agnostic Multilingual ASR through Orthography Unification and Language-Specific Transliteration" in Association for the Advancement of Artificial Intelligence (AAAI), 2025
368 International Journal Hyewon Han, Xiulian Peng, Doyeon Kim, Yan Lu, Hong-Goo Kang "Dual-Branch Guidance Encoder for Robust Acoustic Echo Suppression" in IEEE Transactions on Audio, Speech and Language Processing (TASLP), vol.33, pp.627 - 639, 2025
367 International Journal Hyungseob Lim, Jihyun Lee, Byeong Hyeon Kim, Inseon Jang, Hong-Goo Kang "Perceptual Neural Audio Coding with Modified Discrete Cosine Transform" in IEEE Journal of Special Topics in Signal Processing (JSTSP), 2024
366 International Conference Juhwan Yoon, Hyungseob Lim, Hyeonjin Cha, Hong-Goo Kang "StylebookTTS: Zero-Shot Text-to-Speech Leveraging Unsupervised Style Representation" in APSIPA ASC, 2024