Papers

Dry Electrode-Based Body Fat Estimation System with Anthropometric Data for Use in a Wearable Device

International Journal
2016~2020
작성자
이진영
작성일
2019-05-01 22:15
조회
4807
Authors : Seung-Chul Shin, Jinkyu Lee, Soyeon Choe, Hyuk In Yang, Jihee Min, Ki-Yong Ahn, Justin Y. Jeon, Hong-Goo Kang

Year : 2019

Publisher / Conference : Sensors

Volume : 19, issue 9

The bioelectrical impedance analysis (BIA) method is widely used to predict percent body fat (PBF). However, it requires four to eight electrodes, and it takes a few minutes to accurately obtain the measurement results. In this study, we propose a faster and more accurate method that utilizes a small dry electrode-based wearable device, which predicts whole-body impedance using only upper-body impedance values. Such a small electrode-based device typically needs a long measurement time due to increased parasitic resistance, and its accuracy varies by measurement posture. To minimize these variations, we designed a sensing system that only utilizes contact with the wrist and index fingers. The measurement time was also reduced to five seconds by an effective parameter calibration network. Finally, we implemented a deep neural network-based algorithm to predict the PBF value by the measurement of the upper-body impedance and lower-body anthropometric data as auxiliary input features. The experiments were performed with 163 amateur athletes who exercised regularly. The performance of the proposed system was compared with those of two commercial systems that were designed to measure body composition using either a whole-body or upper-body impedance value. The results showed that the correlation coefficient ( r2 ) value was improved by about 9%, and the standard error of estimate (SEE) was reduced by 28%.
전체 375
375 International Conference Sangmin Lee, Woojin Chung, Seyun Um, and Hong-Goo Kang "UniCoM: A Universal Code-Switching Speech Generator" in EMNLP Findings, 2025
374 International Conference Woongjib Choi, Byeong Hyeon Kim, Hyungseob Lim, Inseon Jang, Hong-Goo Kang "Neural Spectral Band Generation for Audio Coding" in INTERSPEECH, 2025
373 International Conference Jihyun Kim, Doyeon Kim, Hyewon Han, Jinyoung Lee, Jonguk Yoo, Chang Woo Han, Jeongook Song, Hoon-Young Cho, Hong-Goo Kang "Quadruple Path Modeling with Latent Feature Transfer for Permutation-free Continuous Speech Separation" in INTERSPEECH, 2025
372 International Conference Byeong Hyeon Kim,Hyungseob Lim,Inseon Jang,Hong-Goo Kang "Towards an Ultra-Low-Delay Neural Audio Coding with Computational Efficiency" in INTERSPEECH, 2025
371 International Conference Stijn Kindt,Jihyun Kim,Hong-Goo Kang,Nilesh Madhu "Efficient, Cluster-Informed, Deep Speech Separation with Cross-Cluster Information in AD-HOC Wireless Acoustic Sensor Networks" in International Workshop on Acoustic Signal Enhancement (IWAENC), 2024
370 International Conference Yeona Hong, Hyewon Han, Woo-jin Chung, Hong-Goo Kang "StableQuant: Layer Adaptive Post-Training Quantization for Speech Foundation Models" in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2025
369 International Conference Sangmin Lee, Woojin Chung, Hong-Goo Kang "LAMA-UT: Language Agnostic Multilingual ASR through Orthography Unification and Language-Specific Transliteration" in Association for the Advancement of Artificial Intelligence (AAAI), 2025
368 International Journal Hyewon Han, Xiulian Peng, Doyeon Kim, Yan Lu, Hong-Goo Kang "Dual-Branch Guidance Encoder for Robust Acoustic Echo Suppression" in IEEE Transactions on Audio, Speech and Language Processing (TASLP), vol.33, pp.627 - 639, 2025
367 International Journal Hyungseob Lim, Jihyun Lee, Byeong Hyeon Kim, Inseon Jang, Hong-Goo Kang "Perceptual Neural Audio Coding with Modified Discrete Cosine Transform" in IEEE Journal of Special Topics in Signal Processing (JSTSP), 2024
366 International Conference Juhwan Yoon, Hyungseob Lim, Hyeonjin Cha, Hong-Goo Kang "StylebookTTS: Zero-Shot Text-to-Speech Leveraging Unsupervised Style Representation" in APSIPA ASC, 2024